【題目】如圖1,在平面四邊形ABCD中,,,且.將沿BD折成如圖2所示的三棱錐,使.
(1)證明:;
(2)求三棱錐與三棱錐的高的比.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)取BD的中點(diǎn)M,后通過(guò)證明,,得線(xiàn)面垂直,從而有線(xiàn)線(xiàn)垂直;
(2)由(1)得上平面,因此取中點(diǎn),作交延長(zhǎng)線(xiàn)于,可證和就是相應(yīng)的高,求出它們與的關(guān)系后可得結(jié)論.
(1)證明:在平面四邊形ABCD中,,,所以為正三角形,在三棱錐中,取BD的中點(diǎn)M,連接AM,,則,,,所以平面,從而.
(2)由于,可求得,,又,
為等腰三角形,且.如圖,取AM的中點(diǎn)O,連接,則,又,所以平面ABD,則為三棱錐的高,求得.
由平面,知平面上平面,為交線(xiàn),在平面中,過(guò)A點(diǎn)作,交的延長(zhǎng)線(xiàn)于N點(diǎn),則平面,從而AN為三棱錐的高,求得.
所以三棱錐與三棱錐的高的比為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD是菱形,,為等邊三角形,G是線(xiàn)段SB上的一點(diǎn),且SD//平面GAC.
(1)求證:G為SB的中點(diǎn);
(2)若F為SC的中點(diǎn),連接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱錐F-AGC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)Γ的準(zhǔn)線(xiàn)方程為.焦點(diǎn)為.
(1)求證:拋物線(xiàn)Γ上任意一點(diǎn)的坐標(biāo)都滿(mǎn)足方程:
(2)請(qǐng)求出拋物線(xiàn)Γ的對(duì)稱(chēng)性和范圍,并運(yùn)用以上方程證明你的結(jié)論;
(3)設(shè)垂直于軸的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),求線(xiàn)段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
函數(shù)的最大值為1;
“,”的否定是“”;
若為銳角三角形,則有;
“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中錯(cuò)誤的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱中,,,,,,分別為棱的中點(diǎn)
(1)求證:
(2)求直線(xiàn)與所成的角
(3)若為線(xiàn)段的中點(diǎn),在平面內(nèi)的射影為,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為,圓與雙曲線(xiàn)在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線(xiàn)的離心率為
A. 2B. 3C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】蹴鞠起源于春秋戰(zhàn)國(guó),是現(xiàn)代足球的前身.到了唐代,制作的蹴鞠已接近于現(xiàn)代足球,做法是:用八片鞣制好的尖皮縫制成“圓形”的球殼,在球殼內(nèi)放一個(gè)動(dòng)物膀胱,“噓氣閉而吹之”,成為充氣的球.如圖所示,將八個(gè)全等的正三角形縫制成一個(gè)空間幾何體,在幾何體內(nèi)放一個(gè)氣球,往氣球內(nèi)充氣使幾何體膨脹,當(dāng)幾何體膨脹成球體(頂點(diǎn)位置不變)且恰好是原幾何體外接球時(shí),測(cè)得球的體積是,則正三角形的邊長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是( )
A.12個(gè)月的PMI值不低于50%的頻率為
B.12個(gè)月的PMI值的平均值低于50%
C.12個(gè)月的PMI值的眾數(shù)為49.4%
D.12個(gè)月的PMI值的中位數(shù)為50.3%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)與曲線(xiàn),(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫(xiě)出曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com