15.已知函數(shù)f(x)=xln x-a(x-1),其中a∈R,求函數(shù)f(x)在區(qū)間[1,e]上的最小值.

分析 求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)f(x)的單調(diào)區(qū)間,從而求出函數(shù)f(x)在[1,e]的最小值即可.

解答 解:f'(x)=lnx+1-a,令f'(x)=0,∴x=ea-1,
∴f(x)在區(qū)間(0,ea-1)單調(diào)遞減,在區(qū)間(ea-1,+∞)單調(diào)遞增,
∴f(x)min=f(1)=0;
當(dāng)ea-1≤1即a≤1時(shí),f(x)在區(qū)間[1,e]上單調(diào)遞增,
1<ea-1<e即1<a<2時(shí),f(x)在[1,ea-1)遞減,在(ea-1,e]遞增,
∴$f{(x)_{min}}=f({e^{a-1}})=a-{e^{a-1}}$,
當(dāng)ea-1≥e即a≥2時(shí),f(x)在[1,e]遞減,
∴f(x)min=f(e)=a+e-ae,
綜上:當(dāng)a≤1時(shí),f(x)的最小值為0,
 當(dāng)1<a<2時(shí),f(x)的最小值為a-ea-1;
當(dāng)a≥2時(shí),f(x)的最小值為a+e-ae.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知-$\frac{π}{6}$<α<$\frac{π}{6}$,且cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(2α+$\frac{π}{12}$)的值為( 。
A.$\frac{17\sqrt{2}}{50}$B.$\frac{31\sqrt{2}}{50}$C.$\frac{7\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P在曲線y=x3-x+7上移動(dòng),過點(diǎn)P的切線傾斜角的取值范圍是( 。
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)-x+2alnx,且g(x)有兩個(gè)極值點(diǎn)x1,x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,則sin($\frac{α}{2}$+β)的值為(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}=(\frac{{\sqrt{3}}}{2},\frac{1}{2})$則∠ABC=arccos$\frac{3+\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=-x2+2lnx的極大值是函數(shù)g(x)=x+$\frac{a}{x}$的極小值的-$\frac{1}{2}$倍,并且$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.$(-∞,-\frac{40}{3}+2ln3]∪(-1,1)∪(1,+∞)$B.$(-∞,-\frac{34}{3}+2ln3]∪(1,+∞)$
C.$(-∞,-\frac{34}{3}+2ln3]∪[-1,1)∪(1,+∞)$D.$(-∞,-\frac{40}{3}+2ln3]∪(1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式x•f(x)<0的解集為( 。
A.$(-∞,\frac{1}{2})∪(\frac{1}{2},2)$B.(-1,0)∪(1,3)C.$(-∞,\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(-∞,\frac{1}{2})∪(2,+∞)$

查看答案和解析>>

同步練習(xí)冊答案