分析 (1)根據f(x-2)≥0的解集為[-3,-1],結合絕對值不等式的解法,即可求m的值;
(2)利用柯西不等式,即可證明結論.
解答 (1)解:依題意f(x-2)=m-|x+2|≥0,即|x+2|≤m?-m-2≤x≤-2+m,
∴m=1
(2)證明:∵$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=1(a,b,c>0)$
∴由柯西不等式得$3=\sqrt{a}•\frac{1}{{\sqrt{a}}}+\sqrt{2b}•\frac{1}{{\sqrt{2b}}}+\sqrt{3c}•\frac{1}{{\sqrt{3c}}}$$≤\sqrt{a+2b+3c}•\sqrt{\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}}$
整理得a+2b+3c≥9
當且僅當a=2b=3c,即$a=3,b=\frac{3}{2},c=1$時取等號.
點評 本題考查絕對值不等式的解法,考查柯西不等式的運用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com