2.已知集合$A=\left\{{x\left|{y=lg\frac{2-x}{x+2}}\right.}\right\}$,集合B={y|y=1-x2},則集合{x|x∈A∪B且x∉A∩B}為( 。
A.[-2,1]∪(2,+∞)B.(-2,1)∪(2,+∞)C.(-∞,-2)∪[1,2)D.(-∞,-2]∪(1,2)

分析 先求出集合A和集合B,由此能求出集合{x|x∈A∪B且x∉A∩B}.

解答 解:∵集合$A=\left\{{x\left|{y=lg\frac{2-x}{x+2}}\right.}\right\}$={x|-2<x<2},
集合B={y|y=1-x2}={y|y≤1},
∴集合{x|x∈A∪B且x∉A∩B}=(-∞,-2]∪(1,2).
故選:D.

點評 本題考查交集和并集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集、并集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若z=(a-1)+ai為純虛數(shù),其中a∈R,則$\frac{a+{i}^{7}}{1+ai}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若將函數(shù)y=3cos(2x+$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位長度,則平移后圖象的一個對稱中心是( 。
A.($\frac{π}{6}$,0)B.(-$\frac{π}{6}$,0)C.($\frac{π}{12}$,0)D.(-$\frac{π}{12}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知PD垂直于以AB為直徑的圓O所在的平面,點D在線段AB上,點C為圓O上一點,且BD=PD=3,AC=2AD=2.
(Ⅰ)求證:CD⊥平面PAB
(Ⅱ)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正四棱錐的底面邊長為$2\sqrt{2}$,側(cè)面積為$4\sqrt{22}$,則它的體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合$M=\left\{{\left.x\right|x=\frac{n}{2}+1,n∈Z}\right\}$,$N=\left\{{\left.y\right|y=m+\frac{1}{2},m∈Z}\right\}$,則兩集合M,N的關(guān)系為(  )
A.M∩N=∅B.M=NC.M?ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F是拋物線E:y2=2px(p>0)的焦點,直線l過點F且與拋物線E交于A,B兩點,若F是AB的中點且|AB|=8,則p的值是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線$y=sin({x+\frac{π}{3}})$在點$({0,\frac{{\sqrt{3}}}{2}})$處的切線方程是x-2y+$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.《孫子算經(jīng)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個人分60個橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個問題中,得到橘子最少的人所得的橘子個數(shù)是6.

查看答案和解析>>

同步練習(xí)冊答案