12.《孫子算經(jīng)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個(gè)人分60個(gè)橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個(gè)問題中,得到橘子最少的人所得的橘子個(gè)數(shù)是6.

分析 設(shè)第一個(gè)人分到的橘子個(gè)數(shù)為a1,由等差數(shù)列前n項(xiàng)和公式能求出得到橘子最少的人所得的橘子個(gè)數(shù).

解答 解:設(shè)第一個(gè)人分到的橘子個(gè)數(shù)為a1,
由題意得:
${S}_{5}=5{a}_{1}+\frac{5×4}{2}×3=60$,
解得a1=6.
∴得到橘子最少的人所得的橘子個(gè)數(shù)是6.
故答案為:6.

點(diǎn)評 本題考查等差數(shù)列的首項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合$A=\left\{{x\left|{y=lg\frac{2-x}{x+2}}\right.}\right\}$,集合B={y|y=1-x2},則集合{x|x∈A∪B且x∉A∩B}為( 。
A.[-2,1]∪(2,+∞)B.(-2,1)∪(2,+∞)C.(-∞,-2)∪[1,2)D.(-∞,-2]∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)P(x,y)的坐標(biāo)滿足約束條件$\left\{\begin{array}{l}{x+y≤3}\\{y≤3x}\\{x+2y-2≥0}\end{array}\right.$,O為坐標(biāo)原點(diǎn),則|$\overrightarrow{OP}$|的最小值等于( 。
A.1B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.5位大學(xué)畢業(yè)生分配到3家單位,每家單位至少錄用1人,則不同的分配方法共有( 。
A.25種B.60種C.90種D.150種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)A,B分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左,右頂點(diǎn),點(diǎn)P(0,-2),直線BP交E于點(diǎn)Q,$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點(diǎn)P的動(dòng)直線l與E相交于M,N兩點(diǎn),當(dāng)坐標(biāo)原點(diǎn)O位于以MN為直徑的圓外時(shí),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(x+2y)(x-y)7展開式中,含x3y5項(xiàng)的系數(shù)是49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.等腰△ABC的角A=$\frac{π}{3}$,|BC|=2,以A為圓心,$\sqrt{3}$為半徑作圓,MN為該圓的一條直徑,則$\overrightarrow{BM}•\overrightarrow{CN}$的最大值為2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知P是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PB}+\overrightarrow{PC}+4\overrightarrow{PA}=\overrightarrow 0$,現(xiàn)在△ABC內(nèi)任取一點(diǎn),則該點(diǎn)落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{{a}_{n}+1}{6}$=$\frac{{S}_{n}+n}{{S}_{n+1}-{S}_{n}+1}$,a1=m,現(xiàn)有如下說法:
①a2=5;
②當(dāng)n為奇數(shù)時(shí),an=3n+m-3;
③a2+a4+…+a2n=3n2+2n.
則上述說法正確的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊答案