5.求和$\sum_{k=1}^{2017}$kC${\;}_{2017}^{k}$=2017×22016

分析 利用組合數(shù)公式k•${C}_{n}^{k}$=n•${C}_{n-1}^{k-1}$,結(jié)合二項(xiàng)式定理,即可求出結(jié)果.

解答 解:$\sum_{k=1}^{2017}$kC${\;}_{2017}^{k}$=1•${C}_{2017}^{1}$+2•${C}_{2017}^{2}$+3•${C}_{2017}^{3}$+…+2017•${C}_{2017}^{2017}$
=2017•${C}_{2016}^{0}$+2017•${C}_{2016}^{1}$+2017•${C}_{2016}^{2}$+…+2017•${C}_{2016}^{2016}$
=2017×(${C}_{2016}^{0}$+${C}_{2016}^{1}$+${C}_{2016}^{2}$+…+${C}_{2016}^{2016}$)
=2017×22016
故答案為:2017×22016

點(diǎn)評 本題考查了組合數(shù)公式的應(yīng)用問題,也考查了二項(xiàng)式定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)A={x|1<x<5},B={x|a-1<x<a},若“x∈B”是“x∈A”的必要非充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,記棱長為1的正方體C1,以C1各個面的中心為頂點(diǎn)的正八面體為C2,以C2各面的中心為頂點(diǎn)的正方體為C3,以C3各個面的中心為頂點(diǎn)的正八面體為C4,…,以此類推得一系列的多面體Cn,設(shè)Cn的棱長為an,則數(shù)列{an}的各項(xiàng)和為$\frac{6+3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1)若∅⊆A⊆{1,2},則集合A的個數(shù)為4;
(2)若{1}⊆A⊆{1,2},則集合A的個數(shù)為2;
(3)若{a1,a2}⊆A⊆{a1,a2,a3,a4,a5},則集合A的個數(shù)為8;
(4)若{a1,a2,…,am}⊆A⊆{a1,a2,…,am,b1,b2,…,bn},則集合A的個數(shù)為2n
(5)若{a1,a2,…,am}?A?{a1,a2,…,am,b1,b2,…,bn},則集合A的個數(shù)為2n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合M,N,I的關(guān)系如圖,則N∩(∁1M)=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x∈R|ax2+x+1=0}中只有一個元素,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點(diǎn)($\sqrt{2}$,1).
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長軸上的一個動點(diǎn),過P作斜率為$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A,B兩點(diǎn),求證:|PA|2+|PB|2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A={x2,x,xy}、B={1,x,y},若集合A、B所含元素相同,求實(shí)數(shù)x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一次函數(shù)y=mx+n的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于A(2,a),B(-1,-4)兩點(diǎn)(k>0,m>0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象請你寫出反比例函數(shù)的值大于一次函數(shù)的值的自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案