3.已知△ABC的面積為15$\sqrt{3}$,$\overrightarrow{BD}$+$\overrightarrow{CD}$=0,∠BAC=120°
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(2)若AB=10,求AD的值.

分析 (1)根據(jù)三角形的面積公式可得|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=60,再根據(jù)向量的數(shù)量積公式計(jì)算即可,
(2)根據(jù)余弦定理求出BC,再根據(jù)余弦定理求出cosB,再根據(jù)余弦定理即可求出AD.

解答 解:(1)∵△ABC的面積為15$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|sin∠BAC=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|×$\frac{\sqrt{3}}{2}$=15$\sqrt{3}$,
∴|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=60,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos120°=60×(-$\frac{1}{2}$)=-30;
(2)∵$\overrightarrow{BD}$+$\overrightarrow{CD}$=0,
∴D為BC的中點(diǎn),
∵AB=10,∴AC=6,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{100+36+60}$=14.
∴BD=$\frac{1}{2}$BC=7,
∴cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{100+196-30}{2×10×14}$=$\frac{13}{14}$,
∴AD=$\sqrt{A{B}^{2}+B{D}^{2}-2AB•BDcosB}$=$\sqrt{100+49-2×10×7×\frac{13}{14}}$=$\sqrt{19}$

點(diǎn)評(píng) 本題考查了向量的數(shù)量積的運(yùn)算和三角形的面積公式以及余弦定理,考查了學(xué)生的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=sin2x+2$\sqrt{3}sinxcosx+sin({x+\frac{π}{4}})sin({x-\frac{π}{4}})$,若$x={x_0}({0≤{x_0}≤\frac{π}{2}})$為函數(shù)f(x)的一個(gè)零點(diǎn),則cos2x0=$\frac{3\sqrt{5}+1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若曲線y=ax2在曲線y=$\frac{x}{2{x}^{2}-1}$(x>1)的上方,則a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\frac{1}{3}$ax3-x2(a>0)在(0,3)內(nèi)不單調(diào),則實(shí)數(shù)a的取值范圍是( 。
A.0<a<$\frac{1}{3}$B.0<a<$\frac{2}{3}$C.a>$\frac{2}{3}$D.$\frac{2}{3}$<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知直線l:mx+y-1+2m=0,則直線恒經(jīng)過(guò)的定點(diǎn)(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)當(dāng)m=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)存在最大值M,且M>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A、B,上頂點(diǎn)為C,若△ABC是底角為30°的等腰三角形,則$\frac{c}{a}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若角α的終邊經(jīng)過(guò)點(diǎn)P0(-3,-4),則tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,在△ABC中,AB的中點(diǎn)為O,且OA=1,點(diǎn)D在AB的延長(zhǎng)線上,且$BD=\frac{1}{2}AB$.固定邊AB,在平面內(nèi)移動(dòng)頂點(diǎn)C,使得圓M與邊BC,邊AC的延長(zhǎng)線相切,并始終與AB的延長(zhǎng)線相切于點(diǎn)D,記頂點(diǎn)C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標(biāo)原點(diǎn)如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)動(dòng)直線l交曲線Γ于E、F兩點(diǎn),且以EF為直徑的圓經(jīng)過(guò)點(diǎn)O,求△OEF面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案