已知函數(shù),且函數(shù)在區(qū)間(0,1)內(nèi)取得極大值,在區(qū)間(1,2)內(nèi)取得極小值,則的取值范圍為(    )

A.        B.        C.             D.

 

【答案】

B

【解析】

試題分析:

因?yàn)楹瘮?shù)在區(qū)間(0,1)內(nèi)取得極大值,

在區(qū)間(1,2)內(nèi)取得極小值,所以

畫出可行域如圖所示,為可行域內(nèi)的點(diǎn)到的距離的平方,由圖可知,距離的最小值為距離的最大值為,所以的取值范圍為

考點(diǎn):本小題主要考查導(dǎo)數(shù)與極值的關(guān)系以及線性規(guī)劃的應(yīng)用.

點(diǎn)評(píng):對(duì)于此類問(wèn)題,必須牢固掌握導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)求單調(diào)性以及極值和最值.本題導(dǎo)數(shù)與線性規(guī)劃結(jié)合,學(xué)生必須熟練應(yīng)用多個(gè)知識(shí)點(diǎn),準(zhǔn)確分析問(wèn)題考查的實(shí)質(zhì),正確答題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•雁江區(qū)一模)已知函數(shù)f(x)=m+logax(a>0且a≠1)的圖象過(guò)點(diǎn)(8,2),點(diǎn)P(3,-1)關(guān)于直線x=2的對(duì)稱點(diǎn)Q在f(x)的圖象上.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實(shí)數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)二模)已知函數(shù)f(x)=2aex+1,g(x)=lnx-lna+1-ln2,其中a為常數(shù),e=2.718…,函數(shù)y=f(x)的圖象與坐標(biāo)軸交點(diǎn)處的切線為l1,函數(shù)y=g(x)的圖象與直線y=1交點(diǎn)處的切線為l2,且l1∥l2
(Ⅰ)若對(duì)任意的x∈[1,5],不等式x-m>
x
f(x)-
x
成立,求實(shí)數(shù)m的取值范圍.
(Ⅱ)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實(shí)數(shù)x.我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項(xiàng)bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足cn=
nan-1
,是否存在正整數(shù)p,q(1<p<q),使得c1,cp,cq成等比數(shù)列?若存在,求出所有的p,q的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x2
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)在[
12
,2]
上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在區(qū)讓(0,3)上不單調(diào),求a的取值范圍;
(3)當(dāng)a=2時(shí),函數(shù)h(x)=f(x)-mx的圖象與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,又y=h′(x)是y=h(x)的導(dǎo)函數(shù).若正常數(shù)α,β滿足條件α+β=1,β≥α.證明h′(αx1+βx2)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案