已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:.
(1)在上遞減,在上遞增;(2);(3)證明詳見解析.
解析試題分析:(1)先求函數(shù)的導(dǎo)函數(shù),然后分別求解不等式、,即可求出函數(shù)的單調(diào)增、減區(qū)間,注意函數(shù)的定義域;(2)先根據(jù)函數(shù)在取得極值,得到,進(jìn)而求出的值,進(jìn)而采用分離參數(shù)法得到,該不等式恒成立,進(jìn)一步轉(zhuǎn)化為,利用導(dǎo)數(shù)與最值的關(guān)系求出函數(shù)的最小值即可;(3)先將要證明的問題進(jìn)行等價(jià)轉(zhuǎn)化,進(jìn)而構(gòu)造函數(shù),轉(zhuǎn)化為證明該函數(shù)在單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系進(jìn)行證明即可.
試題解析:(1)當(dāng)時(shí),
得,得
∴在上遞減,在上遞增
(2)∵函數(shù)在處取得極值,∴
∴
令,可得在上遞減,在上遞增
∴,即
(3)證明:
令,則只要證明在上單調(diào)遞增
又∵
顯然函數(shù)在上單調(diào)遞增
∴,即
∴在上單調(diào)遞增,即
∴當(dāng)時(shí),有.
考點(diǎn):1.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的極值與導(dǎo)數(shù);3.函數(shù)的最值與導(dǎo)數(shù);4.分離參數(shù)法;5.構(gòu)造函數(shù)法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為,其中是自然對(duì)數(shù)的底數(shù),
求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若在處取得極值,求的單調(diào)遞增區(qū)間;
(2)若在區(qū)間內(nèi)有極大值和極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),。
(1)求函數(shù)在上的值域;
(2)若,對(duì),恒成立,
求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是函數(shù)的一個(gè)極值點(diǎn).
(1)求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),在區(qū)間[0,4]上是增函數(shù).若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,為自然對(duì)數(shù)的底數(shù).
(I)求函數(shù)的極值;
(2)若方程有兩個(gè)不同的實(shí)數(shù)根,試求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中是的導(dǎo)函數(shù).
,
(1)求的表達(dá)式;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),比較與的大小,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com