19.在極坐標(biāo)系中,已知A(2,$\frac{π}{6}$),B(4,$\frac{π}{3}$),則△AOB的面積S=2.

分析 根據(jù)點(diǎn)的極坐標(biāo)可得 OA=2,OB=4,∠AOB=$\frac{π}{6}$,利用三角形的面積公式,即可求出△AOB的面積.

解答 解:在極坐標(biāo)系下,點(diǎn)A(2,$\frac{π}{6}$),B(4,$\frac{π}{3}$),O是極點(diǎn),
∴OA=2,OB=4,∠AOB=$\frac{π}{6}$,
則△AOB的面積等于$\frac{1}{2}$×2×4×$\frac{1}{2}$=2,
故答案為:2.

點(diǎn)評(píng) 本題主要考查點(diǎn)的極坐標(biāo)的定義,三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知正三棱錐A-BCD的外接球半徑R=$\frac{\sqrt{3}}{2}$,P,Q分別是AB,BC上的點(diǎn),且滿足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,DP⊥PQ,則該正三棱錐的高為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列中{an}中,a1=2,a4=9,{bn}是等比數(shù)列,且bn=an-1
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2+$\frac{1}{2}$x2-4x.
(1)求f′(x);
(2)求函數(shù)在區(qū)間[-2,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=x2+ax+b(a,b∈R),記集合A={x∈R|f(x)≤0},B={x∈R|f(f(x)+1)≤0},若A=B≠∅,則實(shí)數(shù)a的取值范圍為( 。
A.[-4,4]B.[-2,2]C.[-2,0]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知兩圓相交于A(-1,3),B(-6,m)兩點(diǎn),且這兩圓的圓心均在直線x-y+c=0上,則m+2c的值為(  )
A.-1B.26C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a=log32,b=ln2,c=5-0.5,則( 。
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線依次與雙曲線C的左、右支交于點(diǎn)P,Q,若|PQ|=2|QF|,∠PQF=60°,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$1+\sqrt{3}$C.$2+\sqrt{3}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|lnx|,g(x)=k(x-1)(k∈R).
(1)若兩個(gè)實(shí)數(shù)a,b滿足0<a<b,且f(a)=f(b),求4a-b的取值范圍;
(2)證明:當(dāng)k<1時(shí),存在x0>1,使得對(duì)任意的x∈(1,x0),恒有f(x)>g(x);
(3)已知0<a<b,證明:存在x0∈(a,b),使得$\frac{lnb-lna}{b-a}=\frac{1}{x_0}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案