9.已知正三棱錐A-BCD的外接球半徑R=$\frac{\sqrt{3}}{2}$,P,Q分別是AB,BC上的點,且滿足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,DP⊥PQ,則該正三棱錐的高為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 將正三棱錐A-BCD補成一個正方體,則正方體的體對角線就是其外接直徑,由正方體的性質知正方體的體對角線的三分之一即為該正三棱錐的高,由此能求出該正三棱錐的高.

解答 解:∵正三棱錐中對棱互相垂直,∴AC⊥BD,
∵P,Q分別是AB,BC上的點,且滿足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,
∴PQ∥AC,∵DP⊥PQ,∴DP⊥AC,
∴AC⊥平面ABD,
又∵該三棱錐是正三棱錐,∴正三棱錐A-BCD的三條側棱相等且互相垂直,
將正三棱錐A-BCD補成一個正方體,則正方體的體對角線就是其外接直徑,
故2R=$\sqrt{3}$,
由正方體的性質知正方體的體對角線的三分之一即為該正三棱錐的高,
該正三棱錐的高為$\frac{\sqrt{3}}{3}$.
故選:A.

點評 本題考查正三棱錐的高的求法,是中檔題,解題時要認真審題,注意構造法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知復數(shù)z=$\frac{1+3i}{3-i}$,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,D是邊AB上的中點,記$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{c}$,則向量$\overrightarrow{CD}$=( 。
A.-$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$B.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知△ABC的邊BC上有一點D滿足$\overrightarrow{BD}$=3$\overrightarrow{DC}$,則$\overrightarrow{AD}$可表示為( 。
A.$\overrightarrow{AD}$=-2$\overrightarrow{AB}$+3$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$\overrightarrow{a}$,$\overrightarrow$是兩個向量,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知中心在原點,焦點在x軸上的橢圓C過點(1,$\frac{\sqrt{2}}{2}$),離心率為$\frac{{\sqrt{2}}}{2}$,A1,A2是橢圓C的長軸的兩個端點(A2位于A1右側),B是橢圓在y軸正半軸上的頂點.
(1)求橢圓C的標準方程;
(2)是否存在經(jīng)過點(0,$\sqrt{2}$)且斜率為k的直線l與橢圓C交于不同兩點P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$與$\overrightarrow{{A_2}B}$共線?如果存在,求出直線方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x,y∈R,i是虛數(shù)單位,且(2x+i)(1-i)=y,則y的值為(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知α是第三象限角,且cos(α+π)=$\frac{4}{5}$,則tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在極坐標系中,已知A(2,$\frac{π}{6}$),B(4,$\frac{π}{3}$),則△AOB的面積S=2.

查看答案和解析>>

同步練習冊答案