A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
分析 將正三棱錐A-BCD補成一個正方體,則正方體的體對角線就是其外接直徑,由正方體的性質知正方體的體對角線的三分之一即為該正三棱錐的高,由此能求出該正三棱錐的高.
解答 解:∵正三棱錐中對棱互相垂直,∴AC⊥BD,
∵P,Q分別是AB,BC上的點,且滿足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,
∴PQ∥AC,∵DP⊥PQ,∴DP⊥AC,
∴AC⊥平面ABD,
又∵該三棱錐是正三棱錐,∴正三棱錐A-BCD的三條側棱相等且互相垂直,
將正三棱錐A-BCD補成一個正方體,則正方體的體對角線就是其外接直徑,
故2R=$\sqrt{3}$,
由正方體的性質知正方體的體對角線的三分之一即為該正三棱錐的高,
該正三棱錐的高為$\frac{\sqrt{3}}{3}$.
故選:A.
點評 本題考查正三棱錐的高的求法,是中檔題,解題時要認真審題,注意構造法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$ | B. | $\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$ | C. | -$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AD}$=-2$\overrightarrow{AB}$+3$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com