已知an=log(n+1)(n+2),n∈N+,我們把使乘積a1•a2•…•an為整數(shù)的n,稱作“類數(shù)”,則在區(qū)間(1,2009)內(nèi)所有類數(shù)的和為
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:計(jì)算題
分析:由對(duì)數(shù)的換底公式化簡(jiǎn)a1•a2…an=log23•log34…logn+1(n+2)=log2(n+2),若使log2(n+2)為整數(shù),則n+2=2k(k∈Z),在(1,2009)內(nèi)的所有類數(shù)可求,進(jìn)而利用分組求和及等比數(shù)列的求和公式求解.
解答: 解:∵an=logn+1(n+2),
∴a1•a2…an=log23•log34…logn+1(n+2)
=
lg3
lg2
lg4
lg3
lg(n+2)
lg(n+1)
=log2(n+2),
若使log2(n+2)為整數(shù),則n+2=2k(k∈Z),在(1,2009)內(nèi)的所有類數(shù)分別為:22-2,23-2,…,210-2,
∴所求的類數(shù)的和為22-2+23-2+…+210-2=
4(1-29)
1-2
-2×9=2026.
故答案為:2026.
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),解答的關(guān)鍵是對(duì)題意的理解,考查了計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:x2+y2-2x+10y-24=0和圓N:x2+y2+2x+2y-8=0相交于A、B兩點(diǎn).
(1)求A、B坐標(biāo);
(2)若圓C過(guò)A、B兩點(diǎn)且圓心在直線x+y=0上,求圓C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)一條漸近線上的一點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),若|PF|的最小值為
1
2
a
,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
夾角為45°,且|
a
|=1,|
b
|=
2
,則|2
a
-
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以A(-1,2 ),B(5,6)為直徑端點(diǎn)的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanα=-2,則
4sinα-2cosα
5cosα+3sinα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
-y2=1
的焦點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:對(duì)任意的實(shí)數(shù)m,使方程x2+mx+1=0無(wú)實(shí)數(shù)根,則“¬p”形式的命題是( 。
A、不存在實(shí)數(shù)m,使方程x2+mx+1=0有實(shí)根
B、存在實(shí)數(shù)m,使方程x2+mx+1=0有實(shí)根
C、有一些的實(shí)數(shù)m,使得方程x2+mx+1=0無(wú)實(shí)根
D、至多有一個(gè)實(shí)根m,使得方程x2+mx+1=0有實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

-60°角是第( 。┫笙藿牵
A、一B、二C、三D、四

查看答案和解析>>

同步練習(xí)冊(cè)答案