已知函數(shù)f(x)=[2sin(x+
π
3
)+sinx]cosx-
3
sin2x.
(1)若函數(shù)y=f(x)的圖象關(guān)于直線x=a(a>0)對稱,求a的最小值;
(2)若函數(shù)y=mf(x)-2在x∈[0,
12
]存在零點,求實數(shù)m的取值范圍.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由條件利用三角函數(shù)的恒等變換求得f(x)=2sin(2x+
π
3
),由函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,可得2a+
π
3
=kπ+
π
2
 k∈z,由此求得a的最小正值.
(2)設(shè)x0∈[0,
12
],由mf(x0)-2=0,可得 m=
1
sin(2x0+
π
3
)
,再利用正弦函數(shù)的定義域和值域求得sin(2x0+
π
3
)的范圍,可得m的范圍.
解答: 解:(1)函數(shù)f(x)=[2sin(x+
π
3
)+sinx]cosx-
3
sin2x=2sinxcosx+
3
cos2x-
3
sin2x=sin2x+
3
cos2x=2sin(2x+
π
3
).
又因為函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,
所以2a+
π
3
=kπ+
π
2
 k∈z,即a=
2
+
π
12

又因為a>0,所以a的最小值為
π
12

(2)設(shè)x0∈[0,
12
],滿足mf(x0)-2=0,可得 m=
2
f(x0)
=
1
sin(2x0+
π
3
)

π
3
≤2x0+
π
3
6
,∴-
1
2
≤sin(2x0+
π
3
)≤1,
∴m∈(-∞,-2]∪[1,+∞).
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的圖象的對稱性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的焦點在x軸上,長軸長為4,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線的漸近線方程為y=±
3
4
x,準(zhǔn)線方程為x=±
16
5
,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+1)=
log2(4-x),x≤0
f(x)-f(x-1),x>0
,計算f(200)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由點P(1,1)發(fā)出光線射到直線x+y=-1上,反射后過點Q(2,3),則反射光線所在直線的一般方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0≤x≤3,則y=x2-4x+3(  )
A、有最小值0,最大值3
B、有最小值-1,最大值0
C、有最小值-1,最大值1
D、有最小值-1,最大值3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,給定下列四個命題
(1)若m∥α,n⊥β且α⊥β,則m⊥n 
(2)若m⊥α,n⊥β且m⊥n,則α⊥β
(3)若m?α,n?β且m∥n,則α∥β  
(4)若α∥β,m⊥α,n⊥β,則m∥n
其中所有正確的命題為
 
.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體的外接球的半徑為1,則這個正方體的棱長為(  )
A、
2
3
B、
3
3
C、
2
2
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=22x+1-m•2x+m.(m∈R)
(1)若函數(shù)f(x)在區(qū)間[0,2]有兩個零點,求m的范圍;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-3)x+3a,x<1
logax,x≥1
是(-∞,+∞)上的減函數(shù),那么a的取值范圍是( 。
A、[
3
4
,1)
B、(1,3)
C、(0,1)
D、(0,3)

查看答案和解析>>

同步練習(xí)冊答案