已知拋物線y=-x2+3上存在關于直線x+y=0對稱的相異兩點A,B,則|AB|等于(  )
A.3B.4C.3D.4
C
【思路點撥】轉化為過A,B兩點且與x+y=0垂直的直線與拋物線相交后求弦長問題求解.
設直線AB的方程為y=x+b,A(x1,y1),B(x2,y2),
⇒x2+x+b-3=0⇒x1+x2=-1,
得AB的中點M(-,-+b),
又M(-,-+b)在直線x+y=0上,可求出b=1,
∴x2+x-2=0,
則|AB|=·=3.
【方法技巧】對稱問題求解技巧
若A,B兩點關于直線l對稱,則直線AB與直線l垂直,且線段AB的中點在直線l上,即直線l是線段AB的垂直平分線,求解這類圓錐曲線上的兩點關于直線l的對稱問題,常轉化為過兩對稱點的直線與圓錐曲線的相交問題求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓過定點(1,0),且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)設是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,①當時,求證直線恒過一定點
②若為定值,直線是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線y2=2px(p>0)上一點P到焦點和拋物線的對稱軸的距離分別為10和6,則p的值為(  )
A.2B.18
C.2或18D.4或16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線y2=2px的焦點坐標為(1,0),則p=    ;準線方程為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將兩個頂點在拋物線y2=2px(p>0)上,另一個頂點是此拋物線焦點的正三角形個數(shù)記為n,則(  )
A.n=0B.n=1C.n=2D.n≥3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數(shù)b的值.
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線y2=8x上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點P在拋物線上運動,F(xiàn)為拋物線的焦點,點M的坐標為(3,2),當PM+PF取最小值時點P的坐標為      

查看答案和解析>>

同步練習冊答案