18.若x,y滿足$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$則z=x+2y的最大值為2.

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,由直線方程可知,要使z最大,則直線在y軸上的截距最大,結合可行域可知當直線z=x+2y過點B時z最大,求出B的坐標,代入z=x+2y得答案.

解答 解:由足約束條件$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$作出可行域如圖,
由z=x+2y,得y=-$\frac{x}{2}$+$\frac{z}{2}$.
要使z最大,則直線y=-$\frac{x}{2}$+$\frac{z}{2}$的截距最大,
由圖可知,當直線y=-$\frac{x}{2}$+$\frac{z}{2}$.
過點A時截距最大.
聯(lián)立$\left\{\begin{array}{l}{x=0}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴A(0,1),
∴z=x+2y的最大值為0+2×1=2.
故答案為:2.

點評 本題考查了簡單的線性規(guī)劃,解答的關鍵是正確作出可行域,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|2x≤1},B={x|lnx<1},則A∪B等于( 。
A.{x|x<e}B.{x|0≤x≤e}C.{x|x≤e}D.{x|x>e}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.閱讀如圖程序,回答下列問題:
(1)畫出該程序的程序框圖
(2)寫出該程序執(zhí)行的功能
(3)若輸出的值為3,求輸入x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,內角A,B,C的對邊分別為a,b,c,且$B=C,2b=\sqrt{3}a$,則cosA=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)不過原點O的直線l與橢圓C交于兩點M,N,且直線OM,MN,ON的斜率依次成等比數(shù)列,問:直線l是否定向的,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,拋物線y=$\frac{1}{16}$x2+1與雙曲線C的漸近線相切,則雙曲線C的方程為$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{lnx}{x}$與函數(shù)g(x)=kx的圖象上存在關于原點對稱的點,則實數(shù)k的最大值是( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知某中學高三文科班學生共800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表從總抽取100人進行成績抽樣調查,先將800人按001,002,…,800進行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你一次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績如下表:
成績分為優(yōu)秀、良好、及格三個等級,橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?0+18+4=42,
①若在該樣本中,數(shù)學成績優(yōu)秀率30%,求a,b的值.
人數(shù)數(shù)學
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學生中,已知a≥10,b≥8,求數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù):
(1)排成前后兩排,前排3人,后排4人;
(2)全體排成一排,女生必須站在一起;
(3)全體排成一排,男生互不相鄰;
(4)全體排成一排,甲、乙兩人中間恰好有3人.

查看答案和解析>>

同步練習冊答案