18.設(shè)集合A={0,2,4,6,8,10},B={4,8},則∁AB={0,2,6,10}.

分析 根據(jù)補(bǔ)集的定義進(jìn)行計(jì)算即可.

解答 解:集合A={0,2,4,6,8,10},B={4,8},
所以∁AB={0,2,6,10}.
故答案為:{0,2,6,10}.

點(diǎn)評(píng) 本題考查了補(bǔ)集的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若一個(gè)圓臺(tái)的正視圖如圖所示,則其體積等于$\frac{14π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}{,^{\;}}x∈[-1,1]\\{(x-2)^2}+1{,^{\;}}^{\;}x∈({1,4}]\end{array}$.
(1)在給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間和最值及取得最值時(shí)x的值(不需要證明);
(3)若方程f(x)-a=0,有三個(gè)實(shí)數(shù)根,求a的取  值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(cosα,0),$\overrightarrow$=(1,sinα),則|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對(duì)任意實(shí)數(shù)m,圓x2+y2-2mx-4my+6m-2=0恒過定點(diǎn),則其坐標(biāo)為(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|-6≤x≤8},B={x|x≤m},若A∪B≠B且A∩B≠∅,則m的取值范圍是[-6,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{b-2a}{c}$=$\frac{{cos({A+C})}}{cosC}$.
(1)求角C的大。
(2)若c=2,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x-b)+f(-2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=ax(a>0,且a≠1)在[1,2]上的最大值和最小值之和為12,則a的值為( 。
A.3B.4C.-4D.-4或3

查看答案和解析>>

同步練習(xí)冊(cè)答案