【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且2x0=m+n.問(wèn):函數(shù)F(x)在點(diǎn)(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.
【答案】解:(Ⅰ)g(x)=f(x)﹣ax=lnx+x2﹣ax,
由題意知,g′(x)≥0,對(duì)任意的x∈(0,+∞)恒成立,即
又∵x>0, ,當(dāng)且僅當(dāng) 時(shí)等號(hào)成立
∴ ,可得
(Ⅱ)由(Ⅰ)知, ,令t=ex,則t∈[1,2],則
h(t)=t3﹣3at,
由h′(t)=0,得 或 (舍去),
∵ ,∴
若 ,則h′(t)<0,h(t)單調(diào)遞減;若 ,則h′(t)>0,h(t)單調(diào)遞增
∴當(dāng) 時(shí),h(t)取得極小值,極小值為
(Ⅲ)設(shè)F(x)在(x0,F(xiàn)(x0))的切線平行于x軸,其中F(x)=2lnx﹣x2﹣kx
結(jié)合題意,有
①﹣②得
所以 ,由④得
所以
設(shè) ,⑤式變?yōu)?
設(shè) ,
所以函數(shù) 在(0,1)上單調(diào)遞增,
因此,y<y|u=1=0,即 ,也就是 此式與⑤矛盾
所以F(x)在(x0,F(xiàn)(x0))的切線不能平行于x軸
【解析】(1)根據(jù)f(x)的解析式,寫出g(x)的解析式,求導(dǎo),由于g(x)單調(diào)遞增,可得出在恒大于零,進(jìn)行參變分離求出a的取值范圍;(2)令進(jìn)行換元,討論t的范圍,求出h(t)的單調(diào)區(qū)間,找出函數(shù)的最小值;(3)先設(shè)F(x)在的切線平行于x軸由題意得出方程組,換元研究單調(diào)性,證出在(0,1)上成立,從而與題設(shè)矛盾,故函數(shù)F(x)在處的切線不平行于x軸。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),設(shè)l是曲線y=f(x)的一條切線,切點(diǎn)是A,且l在點(diǎn)A處穿過(guò)函數(shù)y=f(x)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線y=f(x)運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求切線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖扇形AOB是一個(gè)觀光區(qū)的平面示意圖,其中∠AOB的圓心角為 ,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設(shè)∠AOC=θ,
(1)用θ表示CD的長(zhǎng)度,并寫出θ的取值范圍.
(2)當(dāng)θ為何值時(shí),觀光道路最長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣ <φ<0)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0 , 2)和(x0+2π,﹣2).
(1)求函數(shù)f(x)的解析式;
(2)若銳角θ滿足f(2θ+ )= ,求f(2θ)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中,小方格是邊長(zhǎng)為1的正方形,圖中粗線畫出的是某幾何體的三視圖,且該幾何體的頂點(diǎn)都在同一球面上,則該幾何體的外接球的表面積為( 。
A.32π
B.48π
C.50π
D.64π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓C1:x2+y2=1經(jīng)過(guò)伸縮變換 后得到曲線C2以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cosθ+2sinθ=
(1)求曲線C2的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)在C2上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 的左、右焦點(diǎn)分別為F1(﹣c,0)、F2(c,0),過(guò)橢圓中心的弦PQ滿足|PQ|=2,∠PF2Q=90°,且△PF2Q的面積為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l不經(jīng)過(guò)點(diǎn)A(0,1),且與橢圓交于M,N兩點(diǎn),若以MN為直徑的圓經(jīng)過(guò)點(diǎn)A,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入( 。
A.k≤33
B.k≤38
C.k≤50
D.k≤65
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com