19.已知-$\frac{π}{2}$<α<0,sinα+cosα=$\frac{1}{5}$,則$\frac{1}{co{s}^{2}α-si{n}^{2}α}$的值為(  )
A.$\frac{7}{5}$B.$\frac{25}{7}$C.$\frac{7}{25}$D.$\frac{24}{25}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得2sinαcosα的值,可得cosα-sinα=$\sqrt{{(cosα-sinα)}^{2}}$  的值,從而求得要求式子的值.

解答 解:∵-$\frac{π}{2}$<α<0,sinα+cosα=$\frac{1}{5}$,則1+2sinαcosα=$\frac{1}{25}$,∴2sinαcosα=-$\frac{24}{25}$,
∴cosα-sinα=$\sqrt{{(cosα-sinα)}^{2}}$=$\sqrt{1+2sinαcosα}$=$\frac{7}{5}$,
則$\frac{1}{co{s}^{2}α-si{n}^{2}α}$=$\frac{1}{(cosα+sinα)•(cosα-sinα)}$=$\frac{1}{\frac{1}{5}•\frac{7}{5}}$=$\frac{25}{7}$,
故選:B.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)a≠0,函數(shù)f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),則a的值為( 。
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.寫出命題:“若一個(gè)四邊形兩組對(duì)邊相等,則這個(gè)四邊形為平行四邊形”的逆否命題是若一個(gè)四邊形不是平行四邊形,則這個(gè)四邊形的兩組對(duì)邊不都相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
(1)函數(shù)y=f(x)是周期函數(shù);
(2)函數(shù)f(x)在(0,2)上是減函數(shù);
(3)如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
(4)當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,∠BAC=120°,AB=AC=4,D為BC邊上的點(diǎn),且$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,若$\overrightarrow{CE}$=$3\overrightarrow{EB}$,則($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AE}$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知曲線C1:(x-1)2+y2=1與曲線C2:y(y-mx-m)=0,則曲線C2恒過定點(diǎn)(-1,0);若曲線C1與曲線C2有4個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{\sqrt{3}}{3}$,0)
∪(0,$\frac{\sqrt{3}}{3}$) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓錐的側(cè)面積為2π,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面半徑為1;這個(gè)圓錐的體積為$\frac{\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知冪函數(shù)y=f(x)的反函數(shù)圖象過(6,36),則f($\frac{1}{9}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對(duì)任意實(shí)數(shù)x,不等式ax2-2ax-4<0恒成立,則實(shí)數(shù)a的取值范圍是(-4,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案