分析 由題,已知∠BAC=120°,AB=AC=4,可將問題轉(zhuǎn)化為以向量$\overrightarrow{AB}$與$\overrightarrow{AC}$為基底的向量線性運算.或者由$\overrightarrow{AD}$•$\overrightarrow{BC}$=0分析得AD⊥BC,且D為線段BC的中點,又根據(jù)$\overrightarrow{CE}$=$3\overrightarrow{EB}$可得E為BD的中點,故問題轉(zhuǎn)化為以向量$\overrightarrow{AB}$與$\overrightarrow{AD}$為基底的向量線性運算.
解答 解:∵$\overrightarrow{AD}$•$\overrightarrow{BC}$=0
∴AD⊥BC
又∵AB=AC=4,∠BAC=120°
∴D為BC的中點,且∠BAD=60°,AD=2
∴($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AE}$=2$\overrightarrow{AD}$•$\frac{1}{2}$$(\overrightarrow{AB}+\overrightarrow{AD})$
=$\overrightarrow{AD}•\overrightarrow{AB}+{\overrightarrow{AD}}^{2}$
=2×4×cos60°+22
=8
故填空:8.
點評 考查平面向量基本定理,平面向量線性運算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{25}{7}$ | C. | $\frac{7}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $m≤\frac{1}{2}$ | B. | $m<\frac{1}{2}$ | C. | $m≥\frac{1}{2}$ | D. | $m>\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com