7.設(shè)數(shù)列{an}滿足:${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{{{a_{n+1}}}}{2^n}=2n+2$(n∈N*),且a2=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_{\sqrt{2}}}{a_n}$,求數(shù)列{anbn}的前n項(xiàng)和Sn

分析 (1)利用遞推關(guān)系、等比數(shù)列的通項(xiàng)公式即可得出.
(2)${b_n}={log_{\sqrt{2}}}{a_n}=2{log_2}{2^n}=2n$,${a_n}{b_n}=n×{2^{n+1}}$,再利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{{{a_{n+1}}}}{2^n}=2n+2⇒{a_1}+\frac{a_2}{2}=4⇒{a_1}=2$;
∵${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{{{a_{n+1}}}}{2^n}=2n+2$,
∴${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{a_n}{{{2^{n-1}}}}=2n$(n≥2),
∴$\frac{{{a_{n+1}}}}{2^n}=2⇒{a_{n+1}}={2^{n+1}}⇒{a_n}={2^n}({n≥3})$,經(jīng)檢驗(yàn)a1=2,a2=4滿足上式,
∴${a_n}={2^n}$.
(2)${b_n}={log_{\sqrt{2}}}{a_n}=2{log_2}{2^n}=2n$,
∴${a_n}{b_n}=n×{2^{n+1}}$,
∴數(shù)列{anbn}的前n項(xiàng)和Sn=22+2×23+3×24+…+n×2n+1,
∴2Sn=2×22+2×24+…+(n-1)×2n+1+n×2n+2
∴-Sn=22+23+…+2n+1-n×2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n×2n+2,
∴${S_n}=({n-1})•{2^{n+2}}+4$.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx-2,x≥0}\\{-ln(-x),x<0}\end{array}\right.$的圖象上有兩對(duì)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{e}$)C.(0,+∞)D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.幾何體三視圖如圖所示,其中俯視圖為邊長(zhǎng)為1的等邊三角形,則此幾何體的體積為$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.我國(guó)南宋數(shù)學(xué)家秦九韶(約公元1202-1261年)給出了求n(n∈N*)次多項(xiàng)式anxn+an-1xn-1+…+a1x+a0,當(dāng)x=x0時(shí)的值的一種簡(jiǎn)捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項(xiàng)式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后進(jìn)行求值.運(yùn)行如圖所示的程序框圖,能求得多項(xiàng)式( 。┑闹担
A.x4+x3+2x2+3x+4B.x4+2x3+3x2+4x+5C.x3+x2+2x+3D.x3+2x2+3x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.四棱錐M-EFGH的直觀圖和三視圖如下:

試根據(jù)三視圖提供的數(shù)據(jù)和邊角關(guān)系,解決如下問(wèn)題:
(1)求證:MF⊥EG;
(2)求二面角M-GF-H的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知邊長(zhǎng)為2$\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿對(duì)角邊BD折成二面角A-BD-C為120°的四面體ABCD,則四面體的外接球的表面積為28π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)設(shè)全集U={x|x≤4},集合A={x|x2-x-6<0},集合B={x|-3<x≤3},求(∁UA)∩B.
(2)當(dāng)tanα=3,求$\frac{sinα+cosα}{sinα-cosα}$,cos2α-3sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC,根據(jù)下列條件,求三角形中其他邊和角的大。
(1)A=60°,B=45°,a=10;
(2)a=3,b=4,A=30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)全集U=R,若集合A={x|$\frac{x-1}{4-x}$≥0},B={x|log2x≤2},則A∩B=( 。
A.{x|x<4}B.{x|x≤4}C.{x|1≤x<4}D.{x|1≤x≤4}

查看答案和解析>>

同步練習(xí)冊(cè)答案