已知函數(shù),是不為零的常數(shù)且)。

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),方程在區(qū)間上有兩個(gè)解,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得當(dāng)時(shí),不等式恒成立,若存在,找出一個(gè)滿足條件的,并證明;若不存在,說(shuō)明理由。

解:(1)因?yàn)?img width=117 height=27 src='http://thumb.zyjl.cn/pic1/2011/07/19/12/2011071912082874170964.files/image235.gif' >,

所以,……………………1分

當(dāng)時(shí),

所以在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù);……3分

當(dāng)時(shí),,

所以在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù);……5分

(2)當(dāng)時(shí),由(1)知道在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),所以當(dāng)時(shí)取得極大值,……………………7分

,方程在區(qū)間上有兩個(gè)解,

實(shí)數(shù)的取值范圍是;……………………………………………………9分

(3)存在.由(2)知道當(dāng)時(shí),

……………………11分

所以…12分

當(dāng)時(shí),

所以:!14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東汕頭四中高一上期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分分)已知函數(shù),是不同時(shí)為零的常數(shù)).

(1)當(dāng)時(shí),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(2)求證:函數(shù)內(nèi)至少存在一個(gè)零點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東韶關(guān)市2011-2012學(xué)年高三第一次調(diào)研考試數(shù)學(xué)理科試題 題型:解答題

 已知函數(shù),是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),若不等式對(duì)任意恒成立,求的取值范圍;

(2)求證:函數(shù)內(nèi)至少存在一個(gè)零點(diǎn);

(3)若函數(shù)為奇函數(shù),且在處的切線垂直于直線,關(guān)于的方程上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù),是不為零的常數(shù)且)。

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),方程在區(qū)間上有兩個(gè)解,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得當(dāng)時(shí),不等式恒成立,若存在,找出一個(gè)滿足條件的,并證明;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù)是不為零的常數(shù)且)。

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),方程在區(qū)間上有兩個(gè)解,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得當(dāng)時(shí),不等式恒成立,若存在,找出一個(gè)滿足條件的,并證明;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案