2.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞減,若實數(shù)a滿足f(log3a)+f(${log_{\frac{1}{3}}}a$)≥2f(1),則a的取值范圍是( 。
A.(0,3]B.(0,$\frac{1}{3}$]C.[$\frac{1}{3}$,3]D.[1,3]

分析 由于函數(shù)f(x)是定義在R上的偶函數(shù),則f(-x)=f(x),即有f(x)=f(|x|),f(log3a)+f(-log3a)≥2f(1),即為f(|log3a|)≥f(1),再由f(x)在區(qū)間[0,+∞)上單調(diào)遞減,得到|log3a|≤1,即有-1≤log3a≤1,解出即可.

解答 解:由于函數(shù)f(x)是定義在R上的偶函數(shù),
則f(-x)=f(x),即有f(x)=f(|x|),
由實數(shù)a滿足f(log3a)+f(${log_{\frac{1}{3}}}a$)≥2f(1),
則有f(log3a)+f(-log3a)≥2f(1),
即2f(log3a)≥2f(1)即f(log3a)≥f(1),
即有f(|log3a|)≥f(1),
由于f(x)在區(qū)間[0,+∞)上單調(diào)遞減,
則|log3a|≤1,即有-1≤log3a≤1,
解得$\frac{1}{3}$≤a≤3.
故選C.

點評 本題考查函數(shù)的性質(zhì)和運用,考查函數(shù)的奇偶性、單調(diào)性和運用,考查對數(shù)不等式的解法,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.集合A={x|x>0},B={-2,-1,1,2},則(∁RA)∩B=(  )
A.(0,+∞)B.{-2,-1,1,2}C.{-2,-1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.從某地區(qū)一次中學生知識競賽中,隨機抽取了30名學生的成績,繪成如圖所示的2×2列聯(lián)表:
優(yōu)秀一般合計
男生76
女生512
合計
(1)試問有沒有90%的把握認為優(yōu)秀一般與性別有關(guān);
(2)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機抽取3人,用ξ表示所選3人中優(yōu)秀的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓C:x2+y2-2x+4y-4=0,直線l的斜率為1,與圓交于A、B兩點.
(1)若直線l經(jīng)過圓C的圓心,求出直線的方程;
(2)當直線l平行移動的時候,求△CAB面積的最大值以及此時直線l的方程;
(3)是否存在直線l,使以線段AB為直徑的圓過原點?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知a<0,則“ax0=b”的充要條件是(  )
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知在△ABC中,∠C=90°,M是邊BC的中點,AC=1.若sinB=$\frac{1}{3}$,則AM=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=1+$\frac{{{2^{x+1}}}}{{{2^x}+1}}$+sinx在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n等于( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某化工廠生產(chǎn)某種產(chǎn)品,當年產(chǎn)量在150噸至250噸時,每年的生產(chǎn)成本y萬元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y=$\frac{1}{10}{x^2}$-30x+4000.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸的最低成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.把$2sinx({\sqrt{3}sinx+cosx})-\sqrt{3}$化為Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π])的形式2sin(2x+$\frac{5π}{3}$).

查看答案和解析>>

同步練習冊答案