函數(shù)y=4x-x4,在[-1,2]上的最大、最小值分別為( 。
A.、f(1),f(-1)B.f(1),f(2)C.f(-1),f(2)D.f(2),f(-1)
∵y=4x-x4,
∴y'=-4x3+4=-4(x3-1)
當(dāng)y'≥0時,x≤1,函數(shù)y=x4-4x+3單調(diào)遞增
∴在[1,3]上,當(dāng)x=1時函數(shù)取到最小值0
當(dāng)y'=4x3-4<0時,x>1,函數(shù)y=x4-4x+3單調(diào)遞減
∴在[-2,1]上,當(dāng)x=1時函數(shù)取到最大值
又f(-1)=-4,f(2)=-8,所以最小值為f(2)
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
ax2
+2lnx,曲線y=f(x)在x=1處的切線斜率為4.
(1)求a的值及切線方程;
(2)點P(x,y)為曲線y=f′(x)上一點,求y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線y=f(x)在與x軸交點處的切線為y=x-1,函數(shù)f(x)的導(dǎo)數(shù)y=f′(x)的圖象關(guān)于直線x=2對稱,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△AnBnCn中,記角An、Bn、Cn所對的邊分別為an、bn、cn,且這三角形的三邊長是公差為1的等差數(shù)列,若最小邊an=n+1,則
lim
n→∞
Cn
=( 。
A.
π
2
B.
π
3
C.
π
4
D.
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的圖象在點P(1,f(1))處的切線的傾斜角為
π
4
,求a;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x),在(Ⅰ)的條件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ex-ax(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)如果對任意x∈[2,+∞),不等式f(x)>x+x2恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)n∈N*,求證:(
1
n
n+(
2
n
n+(
3
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=
1
2
時,判斷證明f(x)的單調(diào)性并求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)=
1
3
x3-4x+4
(1)求函數(shù)的極值
(2)求函數(shù)在區(qū)間(-3,4)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品每件成本9元,售價為30元,每星期賣出432件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤21)的平方成正比.已知商品售價降低2元時,一星期多賣出24件.
(Ⅰ)將一個星期內(nèi)該商品的銷售利潤表示成x的函數(shù);
(Ⅱ)如何定價才能使一個星期該商品的銷售利潤最大?

查看答案和解析>>

同步練習(xí)冊答案