已知函數(shù)f(x)的定義域為R,對任意的,且當時,.
(Ⅰ)求證:函數(shù)f(x)為奇函數(shù);
(Ⅱ)求證:
(Ⅲ)求函數(shù)在區(qū)間[-n,n](n)上的最大值和最小值。
(Ⅰ)證明見解析(Ⅱ) 證明見解析(Ⅲ) ,=2n。
(Ⅰ)證明:∵對任意的 ①
令得 ②…………1分
令得……………………2分
∴ 由②得
∴函數(shù)為奇函數(shù)………………………………3分
(Ⅱ)證明:(1)當n=1時等式顯然成立
(2)假設當n=k(k)時等式成立,即,…………4分
則當n=k+1時有
,由①得………………6分
∵ ∴
∴當n=k+1時,等式成立。
綜(1)、(2)知對任意的,成立!8分
(Ⅲ)解:設,因函數(shù)為奇函數(shù),結(jié)合①得
=,……………………9分
∵
又∵當時,
∴,∴
∴函數(shù)在R上單調(diào)遞減…………………………………………12分
∴
由(2)的結(jié)論得,
∵,∴=-2n
∵函數(shù)為奇函數(shù),∴
∴ ,=2n!14分
科目:高中數(shù)學 來源: 題型:
| ||
1-x |
1 |
2 |
OP |
OM |
ON |
1 |
n |
2 |
n |
n-1 |
n |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
n |
i=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
6 |
π |
3 |
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
S1 | S2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com