分析 (1)將極坐標方程轉(zhuǎn)化成直角坐標系方程,求得C點坐標,半徑為2,寫出圓C的直角坐標方程;
(2)根據(jù)矩陣的變換$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,求得$\left\{\begin{array}{l}{x=x′}\\{y=\frac{y′}{2}}\end{array}\right.$,將x′及y′代入圓C方程,即可求得曲線C1的方程;
(3)將參數(shù)方程轉(zhuǎn)化為普通方程,l過圓心,弦長就等于直徑,即可求得所截得的弦長.
解答 解:(1)在平面直角坐標系中,$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=1}\end{array}\right.$,C點坐標為:$C({\sqrt{3},1})$…2分
圓C的直角坐標方程:${(x-\sqrt{3})^2}+{(y-1)^2}=4$…4分
(2)由$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
∴$\left\{\begin{array}{l}{x=x′}\\{y=\frac{y′}{2}}\end{array}\right.$,
將x′及y′代入圓C方程整理得:$4{x^2}+{y^2}-8\sqrt{3}x-4y=0$…10分
(3)將直線的參數(shù)方程轉(zhuǎn)化成普通方程得:
直線l:$x-\sqrt{3}y=0$,過圓心,
所以弦長為4.…14分
點評 本題考查極坐標與直角坐標的轉(zhuǎn)化,直線參數(shù)方程轉(zhuǎn)化普通方程,矩陣的變換,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源:2017屆甘肅會寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
選修4—5:不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實數(shù)a的值;
(2)在(1)的條件下,若存在實數(shù)n使f(n)≤m-f(-n)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆甘肅會寧縣一中高三上學(xué)期9月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
設(shè)函數(shù),若,則的值等于( )
A.2loga8 B.16 C.8 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆安徽六安一中高三上學(xué)期月考二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知的三個內(nèi)角的對邊分別為且,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆安徽六安一中高三上學(xué)期月考二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
設(shè)向量與滿足,在方向上的投影為1,若存在實數(shù),使得與垂直,則( )
A.3 B.2 C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
非嚴重污染 | 嚴重污染 | 合計 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計 | 85 | 15 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com