12.已知α∈($\frac{3}{2}$π,2π),且cos(π+α)=-$\frac{1}{2}$,求tan(2π-α),sin(5π+α)的值.

分析 由已知利用三角函數(shù)的誘導(dǎo)公式求得α,再由誘導(dǎo)公式求得tan(2π-α),sin(5π+α)的值.

解答 解:由cos(π+α)=-$\frac{1}{2}$,得-cosα=$-\frac{1}{2}$,則cosα=$\frac{1}{2}$,
又α∈($\frac{3}{2}$π,2π),∴α=$\frac{5π}{3}$.
∴tan(2π-α)=-tanα=-tan$\frac{5π}{3}$=$\sqrt{3}$,
sin(5π+α)=-sinα=-sin$\frac{5π}{3}$=$\frac{\sqrt{3}}{2}$.

點評 本題考查三角函數(shù)的化簡求值,考查誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)等差數(shù)列{an}的公差為d,前n項和為Sn,已知a2=5,S10=120.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,求證${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\int_{0}^{3}{|{x^2}-1|}dx$=$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(1,-$\sqrt{3}$sin$\frac{x}{2}$),$\overrightarrow$=(sinx,2sin$\frac{x}{2}$).函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{3}$,
(1)求f(x)的單調(diào)增區(qū)間;
(2)求f(x)在區(qū)間[0,$\frac{2π}{3}$]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓C的極坐標方程為:ρ=2sinθ,則其圓心C的直角坐標是( 。
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中的前n項和為Sn=$\frac{{n}^{2}+n}{2}$,又bn=$\frac{1}{{S}_{n}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在邊長為2的菱形ABCD中,∠BAD=60°,若點E為AB邊上的動點,點F是AD邊上的動點,且$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{AF}$=(1-λ)$\overrightarrow{AD}$,0≤λ≤1,則$\overrightarrow{DE}$•$\overrightarrow{BF}$的最大值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=3,|${\overrightarrow b}$|=2$\sqrt{3}$,$\overrightarrow a$•$\overrightarrow b$=-9,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知tanα=2,則$\frac{3sinα+2cosα}{sinα-cosα}$的值為8.

查看答案和解析>>

同步練習(xí)冊答案