19.如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=l,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足$\overrightarrow{{A_1}P}$=λ$\overrightarrow{{A_1}{B_1}}$.
(I)當(dāng)λ≠1時(shí),求證:直線BC1∥面PMN;
( II)當(dāng)λ=1時(shí),求三棱錐A1-PMN的體積.

分析 (I)連結(jié)BC1,則MN∥BC1,由此能證明BC1∥平面PMN.
( II)λ=1時(shí),點(diǎn)P與B1重合,${S}_{△PMN}={S}_{矩形BC{C}_{1}{B}_{1}}$-(S△CMN+${S}_{△{D}_{1}DN}$+${S}_{△{B}_{1}{C}_{1}M}$),連結(jié)AN,A1到平面PMN的距離d=AN,由此能求出三棱錐A1-PMN的體積.

解答 證明:(I)連結(jié)BC1,
∵M(jìn)、N是CC1和BC的中點(diǎn),
∴MN∥BC1,
又∵λ≠1,∴BC1?平面PMN,
∴BC1∥平面PMN.
解:( II)λ=1時(shí),點(diǎn)P與B1重合,
∵AB⊥AC,∴BC=$\sqrt{A{B}^{2}+A{C}^{2}}$=$\sqrt{2}$,
∴${S}_{△PMN}={S}_{矩形BC{C}_{1}{B}_{1}}$-(S△CMN+${S}_{△{D}_{1}DN}$+${S}_{△{B}_{1}{C}_{1}M}$)
=$\sqrt{2}×1-(\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{1}{2}+\frac{1}{2}×\frac{\sqrt{2}}{2}×1+\frac{1}{2}×\sqrt{2}×\frac{1}{2})$
=$\frac{3\sqrt{2}}{8}$,
連結(jié)AN,∵AB=AC,N是BC的中點(diǎn),
∴AN⊥BC,
又由條件CC1⊥平面ABC,∴CC1⊥AN,
又CC1∩BC=C,CC1和BC?面BB1C1C,
∴AN⊥面BB1C1C,
又AA1∥面BB1C1C,
∴A1到平面PMN的距離d=AN=$\frac{\sqrt{2}}{2}$,
∴三棱錐A1-PMN的體積${V}_{{A}_{1}-PMN}$=$\frac{1}{3}•{S}_{△PMN}•AN=\frac{1}{3}×\frac{3\sqrt{2}}{8}×\frac{\sqrt{2}}{2}=\frac{1}{8}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,a5+a10=58,a4+a9=50,則它的前10項(xiàng)和為210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題正確的是(  )
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,則$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,則$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$與$\overrightarrow b$是單位向量,則$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率等于$\frac{{\sqrt{3}}}{2}$,且雙曲線$\frac{x^2}{3}-{y^2}=1$的焦點(diǎn)恰好是橢圓C的兩個(gè)頂點(diǎn)
(1)求橢圓C的方程.
(2)若點(diǎn)P是第一象限內(nèi)該橢圓上的一點(diǎn),且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(3)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩個(gè)點(diǎn)A,B,且∠AOB為銳角(其中O為原點(diǎn)),求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知命題p:x2-(2a+4)x+a2+4a<0,命題q:(x-2)(x-3)<0,若¬p是¬q的充分不必要條件,則a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合M、N滿足條件:M∪N={1,2},則這樣的有序集合對(duì)(M,N)共有( 。
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M,N分別是棱AA1,CC1的中點(diǎn),
(Ⅰ)求正方體ABCD-A1B1C1D1的內(nèi)切球的半徑與外接球的半徑之比;
(Ⅱ)求四棱錐A-MB1ND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=sinωx(ω>0)在區(qū)間[0,$\left.{\frac{π}{3}}$]上為增函數(shù),且圖象關(guān)于點(diǎn)(3π,0)對(duì)稱,則ω的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.利用函數(shù)的性質(zhì)(如單調(diào)性與奇偶性)來(lái)解不等式是我們常用方法,通過(guò)下列題組體會(huì)此方法的適用范圍及應(yīng)注意什么問(wèn)題?
(1)已知函數(shù)f(x)=x|x-2|,則不等式f($\sqrt{2}$-x)≤f(1)的解集為[-1,+∞).
(2)已知定義在R上的奇函數(shù)f(x)在x>0時(shí)滿足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]恒成立,則實(shí)數(shù)t的最大值是$\sqrt{2}$-1.
(3)已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>1}\\{(x-1)^{2}+2,x≤1}\end{array}$,則不等式f(1-x2)>f(2x)的解集是{x|x<-1-$\sqrt{2}$ 或 x>-1+$\sqrt{2}$ }.

查看答案和解析>>

同步練習(xí)冊(cè)答案