已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,則|
b
|等于(  )
A、
10
2
7
B、
5
2
或2
2
C、
5
2
D、2
2
考點(diǎn):平面向量數(shù)量積的坐標(biāo)表示、模、夾角
專題:平面向量及應(yīng)用
分析:根據(jù)題意,平面向量
a
、
b
共線且反向,求m的值,即可得出|
b
|.
解答: 解:∵平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,
∴m(2m+1)-3×2=0,
解得m=-2,或m=
3
2
;
驗(yàn)證m=
3
2
時(shí)不滿足題意,
b
=(2,-2);
∴|
b
|=
22+(-2)2
=2
2

故選:D.
點(diǎn)評(píng):本題考查了平面向量的應(yīng)用問(wèn)題,解題時(shí)應(yīng)用平面向量的坐標(biāo)表示求向量共線問(wèn)題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=-x+1.
(1)畫(huà)出函數(shù)f(x)的圖象;寫出函數(shù)的解析式;
(2)根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時(shí)寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=loga
1-mx
x-1
是奇函數(shù)(a>0且a≠1)
(1)求m的值;
(2)當(dāng)0<a<1時(shí),判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并用定義證明;
(3)當(dāng)a>1時(shí),x∈(r,a-2)時(shí),f(x)的值域是(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

總體由編號(hào)為01,02,…,19,20的個(gè)體組成,利用下面的隨機(jī)數(shù)表選取7個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第3列和第4列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù),則選出的第7個(gè)個(gè)體的編號(hào)為
 

78166572080263140702436997280198
32049234493582003623486969387481

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)生物死亡時(shí),他機(jī)體內(nèi)原有的碳14含量按確定的規(guī)律衰減,大約每經(jīng)過(guò)5730年衰減為原來(lái)的一半,這個(gè)時(shí)間稱為“半衰期”,據(jù)此規(guī)律,生物體內(nèi)碳14的含量P與死亡年數(shù)t間的函數(shù)關(guān)系式為( 。
A、P=(
1
2
)t
B、P=(
1
2
)5730t
C、P=(
1
2
)
t
5730
D、P=(
1
2
)
5730
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x-2y-6=0在x軸上的截距為a,在y軸上的截距為b,則( 。
A、a=2,b=3
B、a=-2,b=-3
C、a=-2,b=3
D、a=2,b=-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4sin(ωx-
π
4
)sin(ωx+
π
4
)(ω>0)的最小正周期為π,且sinα=
3
5
,則f(α)=(  )
A、
7
25
B、-
14
25
C、
24
25
D、-
12
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形OAB的周長(zhǎng)為4,弧長(zhǎng)為AB.
(1)當(dāng)∠AOB=60°時(shí),求此時(shí)弧的半徑;
(2)當(dāng)扇形面積最大時(shí),求此時(shí)圓心角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-2014,
S2014
2014
-
S2008
2008
=6,則S2013等于(  )
A、2013B、-2013
C、-4026D、4026

查看答案和解析>>

同步練習(xí)冊(cè)答案