分析 (1)求出導(dǎo)函數(shù)f'(x)=3x2-x-2=0,得出函數(shù)的單調(diào)區(qū)間即可;(2)可判斷函數(shù)的最大值在f(-$\frac{2}{3}$)或f(2)取得,得出2+c<c2,求解即可.
解答 解:(1)f(x)=x3-$\frac{1}{2}$x2-2x+c,
∴f'(x)=3x2-x-2=(3x+2)(x-1),
令f′(x)>0,解得:x<-$\frac{2}{3}$或x>1,
令f′(x)<0,解得:-$\frac{2}{3}$<x<1,
∴函數(shù)在(-∞,-$\frac{2}{3}$)遞增,在(-$\frac{2}{3}$,1)上遞減,在(1,+∞)遞增;
(2)由(1)得:函數(shù)在x=-$\frac{2}{3}$處取得極大值,
f(-$\frac{2}{3}$)=$\frac{22}{27}$+c<f(2)=2+c,
∴在[-1,2]上,2+c<c2,
∴c<-1或c>2.
點(diǎn)評(píng) 考查了利用導(dǎo)函數(shù)判斷函數(shù)在區(qū)間內(nèi)的最值問題.屬于中檔題型,應(yīng)熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數(shù) | 2 | 5 | 13 | 13 | 5 | 2 |
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數(shù) | 1 | 8 | 12 | 5 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4n | B. | 4n-1 | C. | 42n-1 | D. | 42n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com