設集合A={1,2,3},集合B={-2,2},則A∩B=
 
考點:交集及其運算
專題:集合
分析:利用交集的運算法則求解.
解答: 解:∵集合A={1,2,3},集合B={-2,2},
∴A∩B={2}.
故答案為:{2}.
點評:本題考查交集的運算,解題時要認真審題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在極坐標系(ρ,θ)(0≤θ≤2π)中,曲線ρ(cosθ+sinθ)=1與ρ(cosθ-sinθ)=1的交點的極坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M為△ABC的邊BC上一點,若AM=CM=2,BM=1,則
2
AB+AC的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|x-2+yi|=1,(x,y∈R),則|3x-y|的最大值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+x+1,f(2x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x2+(y-2)2=0是x(y-2)=0成立的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,4),若拋物線y2=2px的焦點與橢圓
x2
10
+
y2
6
=1的右焦點重合,該拋物線上有一點M,它在y軸上的射影為N,則|MA|+|MN|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx-cosx的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正三棱柱的三視圖如圖所示,則這個正三棱柱的高和底面邊長分別為( 。
A、1,
3
B、
2
,1
C、2,1
D、1,2

查看答案和解析>>

同步練習冊答案