7.關(guān)于x的方程($\frac{1}{π}$)x=$\frac{1+a}{1-a}$有負(fù)實(shí)數(shù)根,則a的取值范圍是( 。
A.(-1,1)B.(0,1)C.(-1,0)D.(-$\frac{2}{3}$,$\frac{2}{3}$)

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)得到關(guān)于a的不等式,解出即可.

解答 解:由題意得:
($\frac{1}{π}$)x=$\frac{1+a}{1-a}$>1,解得:0<a<1,
故選:B.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),考查解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=lgx2,g(x)=2lgx
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x-1}$,g(x)=$\sqrt{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若0≤x<π,則滿足方程tan(4x-$\frac{π}{4}$)=1的角的集合是{$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知平面直角坐標(biāo)系中的動(dòng)點(diǎn)M與兩個(gè)定點(diǎn)M1(26,1),M2(2,1)的距離之比等于5.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡方程,并說明軌跡是什么圖形;
(Ⅱ)記動(dòng)點(diǎn)M的軌跡為C,過點(diǎn)P(-2,3)的直線l被C所截得的弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有一容量為50的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[10,15),4;[15,20),5;[20,25),10;[25,30),11;
[30,35),9;[35,40),8;[40,45],3.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖和頻率分布折線圖;
(3)估計(jì)總體在[20,35)之內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=log4(4x+1)+kx,(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)h(x)=4${\;}^{f(x)+\frac{x}{2}}$+m•2x-1,x∈[0,log23]最小值為0,求m的值;
(3)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+a沒有交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,則滿足f(x)≤4的x的取值范圍是(  )
A.[-1,2]B.[0,2]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.關(guān)于函數(shù)y=log4(x2-2x+5)有以下4個(gè)結(jié)論:其中正確的有①②③.
①定義域?yàn)镽;                   ②遞增區(qū)間為[1,+∞);
③最小值為1;                    ④圖象恒在x軸的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等腰△ABC中,AB=AC,AC邊上的中線BD長(zhǎng)為6,則當(dāng)△ABC的面積取得最大值時(shí),AB的長(zhǎng)為4$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案