分析 (Ⅰ)直接利用距離的比,列出方程即可求點M的軌跡方程,然后說明軌跡是什么圖形;
(Ⅱ)設(shè)出直線方程,利用圓心到直線的距離,半徑與半弦長滿足的勾股定理,求出直線l的方程.
解答 解:(Ⅰ)設(shè)M(x,y),由題意得:$\frac{\sqrt{(x-26)^{2}+(y-1)^{2}}}{\sqrt{(x-2)^{2}+(y-1)^{2}}}$=5,
化簡得:(x-1)2+(y-2)2=25…(5分)
所以動點M的軌跡方程是:(x-1)2+(y-2)2=25,
動點M的軌跡是以(1,1)為圓心,5為半徑的圓…(6分)
(Ⅱ)當直線l的斜率不存在時,過點A(-2,3)的直線l:x=-2,
此時過點A(-2,3)的直線l被圓所截得的線段的長為:2$\sqrt{25-9}$=8,
∴l(xiāng):x=-2符合題意.
當直線l的斜率存在時,設(shè)過點A(-2,3)的直線l的方程為y-3=k(x+2),即kx-y+2k+3=0,
圓心到l的距離d=$\frac{|3k+2|}{\sqrt{{k}^{2}+1}}$,
由題意,得($\frac{|3k+2|}{\sqrt{{k}^{2}+1}}$)2+42=52,解得k=$\frac{5}{12}$.
∴直線l的方程為$\frac{5}{12}$x-y+$\frac{23}{6}$=0.即5x-12y+46=0.
綜上,直線l的方程為x=-2,或5x-12y+46=0.…(12分)
點評 本題考查曲線軌跡方程的求法,直線與圓的位置關(guān)系的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | $(-\sqrt{2},\sqrt{2})$ | C. | (-1,1) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (0,1) | C. | (-1,0) | D. | (-$\frac{2}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com