如圖,是⊙的一條切線,切點(diǎn)為,都是⊙的割線,已知.
(1)證明:;
(2)證明:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求與所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,,.
(1)設(shè)點(diǎn)是的中點(diǎn),證明:平面;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是邊長為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段上一動點(diǎn),試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,,是的中點(diǎn).
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(如圖1)在平面四邊形中,為中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).
(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知矩形中,,,將矩形沿對角線把折起,使移到點(diǎn),且在平面上的射影恰好在上.
(1)求證:;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com