如圖,四棱錐中,底面為正方形,
平面,為棱的中點(diǎn).

(1)求證:平面平面;
(2)求二面角的余弦值.
(3)求點(diǎn)到平面的距離.
(1)要證明面面垂直,根據(jù)平面,所以以及得到平面.從而得到證明。
(2)  (3)

試題分析:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015343259393.png" style="vertical-align:middle;" />平面,所以. 2分
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015343213535.png" style="vertical-align:middle;" />為正方形,所以,
所以平面
所以平面平面.  4分 
(2)解:在平面內(nèi)過作直線
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015343634446.png" style="vertical-align:middle;" />平面,所以平面
兩兩垂直,建立如圖所示的空間直角坐標(biāo)系
設(shè),則
所以 ,
設(shè)平面的法向量為,則有
所以   取,得
易知平面的法向量為
所以
由圖可知二面角的平面角是鈍角,      
所以二面角的余弦值為.   8分
(3)根據(jù)等體積法可知到平面的距離,則可以利用
 ,那么結(jié)合底面積和高可知          12分
點(diǎn)評:主要是考查了空間中的面面垂直的判定定理和二面角以及點(diǎn)到面的距離的求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,.

(Ⅰ)求證:平面⊥平面
(Ⅱ)若二面角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,平面平面,,. 過點(diǎn),垂足為,點(diǎn),分別為棱的中點(diǎn).

求證:(1)平面平面;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱的所有棱長都為,且平面,中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體(所有棱長都相等)中,分別是的中點(diǎn),下面四個結(jié)論中不成立的是(  )
A.平面平面B.平面
C.平面平面D.平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為1,的中點(diǎn),為線段上的動點(diǎn),過點(diǎn)的平面截該正方體所得的截面記為,則下列命題正確的是         (寫出所有正確命題的編號)。

①當(dāng)時,為四邊形
②當(dāng)時,為等腰梯形
③當(dāng)時,的交點(diǎn)滿足
④當(dāng)時,為六邊形
⑤當(dāng)時,的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是不同的直線,是不同的平面,下列命題中正確的是
A.若m//
B.若m//
C.若m//
D.若m//

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩條直線,為兩個平面,下列說法正確的是(  )
A.若,則
B.若
C.
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線段PDBC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案