2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},則A∩B=( 。
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

分析 化簡全集A,根據(jù)交集的定義寫出A∩B.

解答 解:全集A={x|x≤9,x∈N*}={1,2,3,4,5,6,7,8,9};
集合B={x|0<x<7},
則A∩B={1,2,3,4,5,6}.
故選:C.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{a{x}^{2}+x+a}{{e}^{x}}$,a∈R.
(1)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若a=0,x1<x<x2<2,證明:$\frac{f(x)-f({x}_{1})}{x-{x}_{1}}$>$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若過點(diǎn)P(1-a,1+a)和Q(3,2a)的直線的傾斜角為鈍角,則實數(shù)a的取值范圍是(  )
A.(-2,1)B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐P-ABC的四個頂點(diǎn)都在半徑為4的球面上,且三條側(cè)棱兩兩互相垂直,則該三棱錐側(cè)面積的最大值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且$\frac{BR}{RH}$=λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.
(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實數(shù)λ,使得直線FR與平面DEF所成角的正弦值為$\frac{{2\sqrt{2}}}{5}$?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,m).若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值為(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中,正確的是(  )
A.數(shù)據(jù)5,4,4,3,5,2的眾數(shù)是4
B.若隨機(jī)變量X~N(3,1)則P(X<4)=p,則(2<X<4)=1-2p
C.數(shù)據(jù)2,3,4,5的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≤2}\\{x+y≥2}\\{2x-y≥2}\end{array}\right.$,則$\frac{y+x}{y+2x}$的取值范圍是(  )
A.[0,1]B.[$\frac{1}{3}$,1]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)設(shè)函數(shù)f(x)=|x-2|+|x+a|,若關(guān)于x的不等式f(x)≥3在R上恒成立,求實數(shù)a的取值范圍;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,求$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案