若圓C : x2y2-4x+2ym=0與y軸交于AB兩點(diǎn),且∠ACB=90º,則實(shí)數(shù)m的值為__________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-2,0),N(2,0),動(dòng)點(diǎn)P滿足條件||PM|-|PN||=2
2
,記動(dòng)點(diǎn)P的軌跡為W.
(1)求W的方程;
(2)過N(2,0)作直線l交曲線W于A,B兩點(diǎn),使得|AB|=2
2
,求直線l的方程.
(3)若從動(dòng)點(diǎn)P向圓C:x2+(y-4)2=1作兩條切線,切點(diǎn)為A、B,令|PC|=d,試用d來表示
PA
PB
,若
PA
PB
=
36
5
,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知過點(diǎn)A(-1,0)的動(dòng)直線l與圓C:x2+(y-3)2=4相交于P,Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)求證:當(dāng)l與m垂直時(shí),l必過圓心C;
(2)當(dāng)PQ=2
3
時(shí),求直線l的方程;
(3)探索
AM
AN
是否與直線l的傾斜角有關(guān)?若無關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)F(0,1)作直線l與拋物線x2=4y相交于兩點(diǎn)A、B,圓C:x2+(y+1)2=1
(1)若拋物線在點(diǎn)B處的切線恰好與圓C相切,求直線l的方程;
(2)過點(diǎn)A、B分別作圓C的切線BD、AE,試求|AB|2-|AE|2-|BD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個(gè)動(dòng)點(diǎn)P在圓x2+y2=4上移動(dòng)時(shí),求點(diǎn)P與定點(diǎn)A(4,3)連線的中點(diǎn)M的軌跡方程.
(2)自定點(diǎn)A(4,3)引圓x2+y2=4的割線ABC,求弦BC中點(diǎn)N的軌跡方程.
(3)在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
①求圓C的方程;
②若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄AP與兩圓(x+2)2+y2=2,(x-2)2+y2=2中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求動(dòng)圓圓心P的軌跡E的方程;
(2)過(2,0)作直線l交曲線E于A、B兩點(diǎn),使得|AB|=2
2
,求直線l的方程;
(3)若從動(dòng)點(diǎn)P向圓C:x2+(y-4)2=1作兩條切線,切點(diǎn)為A、B,設(shè)|PC|=t,試用t表示
PA
PB
,并求
PA
PB
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案