16.已知命題p:|4-x|≤6,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要條件,則a的取值范圍是(0,3].

分析 先解不等式分別求出?p和q,再由非p是q的充分不必要條件,求a的取值范圍.

解答 解:?p:|4-x|>6,x>10,或x<-2,
A={x|x>10,或x<-2}
q:x2-2x+1-a2≥0,x≥1+a,或x≤1-a,
記B={x|x≥1+a,或x≤1-a}
而?p⇒q,∴A?B,即$\left\{\begin{array}{l}{1-a≥-2}\\{1+a≤10}\\{a>0}\end{array}\right.$,
解得0<a≤3.
故答案為(0,3].

點(diǎn)評(píng) 本題考查必要條件、充分條件和充要條件的判斷和應(yīng)用,解題的關(guān)鍵是正確求解不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.圓x2+y2=16上的點(diǎn)到直線x-y=2的距離的最大值是( 。
A.4-$\sqrt{2}$B.16-$\sqrt{2}$C.16+$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanB和tanA;    
(Ⅱ)若c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦點(diǎn)在x軸的橢圓”是“-1<n<2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\sqrt{3}$,過(guò)左焦點(diǎn)F1(-c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)F1E交拋物線y2=4cx于P,Q兩點(diǎn),則|PE|+|QE|的值為(  )
A.$10\sqrt{2}a$B.10aC.$(5+\sqrt{5})a$D.$12\sqrt{2}a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知二次函數(shù)f(x)=mx2+(m+2)mx+2為偶函數(shù),求實(shí)數(shù)m的值=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖為一組合幾何體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求證:AC⊥平面PDB;
(II)求四棱錐B-CEPD的體積;
(III)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.y=-2x+1B.y=x2-2C.y=$\frac{1}{x}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在等比數(shù)列{an}中,已知a4=3a3,則$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$=( 。
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案