【題目】在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱AA1的中點(diǎn),則異面直線(xiàn)DE與BC所成的角的余弦值是

【答案】
【解析】解:∵BC∥AD,
∴∠ADE是異面直線(xiàn)DE與BC所成的角,
∵棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,
AD=2,AE=1,∴DE=
∴cos∠ADE= =
∴異面直線(xiàn)DE與BC所成的角的余弦值是
所以答案是:

【考點(diǎn)精析】本題主要考查了異面直線(xiàn)及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線(xiàn)所成角的求法:1、平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等軸雙曲線(xiàn)C的中心在原點(diǎn),焦點(diǎn)在x軸上,雙曲線(xiàn)C與拋物線(xiàn)y2=16x的準(zhǔn)線(xiàn)交于A,B兩點(diǎn),|AB|=4 ,則雙曲線(xiàn)C的實(shí)軸長(zhǎng)為(
A.
B.2
C.4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +lnx在(1,+∞)上是增函數(shù),且a>0.
(1)求a的取值范圍;
(2)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)設(shè)a>1,b>0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線(xiàn)l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求證:直線(xiàn)l恒過(guò)定點(diǎn);
(2)求直線(xiàn)l被圓C截得的弦長(zhǎng)最長(zhǎng)與最短的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P是圓x2+y2=36的圓心,R是橢圓 上的一動(dòng)點(diǎn),且滿(mǎn)足
(1)求動(dòng)點(diǎn)Q的軌跡方程
(2)若直線(xiàn)y=x+1與曲線(xiàn)Q相交于A、B兩點(diǎn),求弦AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(用空間向量坐標(biāo)表示解答)已知正三棱柱ABC﹣A1B1C1的各棱長(zhǎng)都是4,E是BC的中點(diǎn),F(xiàn)在CC1上,且CF=1.

(1)求證:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場(chǎng)地每平方米的造價(jià)為 元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為 元(k為正常數(shù)).

(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)任意實(shí)數(shù)x,不等式mx2﹣(3﹣m)x+1>0成立或不等式mx>0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案