考點(diǎn):數(shù)列與不等式的綜合,數(shù)列的求和
專題:綜合題,綜合法,等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)公式a
n=S
n-S
n-1,(n≥2),化簡(jiǎn)得:當(dāng)n≥2時(shí),a
n-a
n-1=4,判斷出等差數(shù)列,運(yùn)用等差數(shù)列的通項(xiàng)公式求解.
(2)運(yùn)用裂項(xiàng)方法求出C
n=
=
(
-
),得出T
n=(1-
)根據(jù)關(guān)于n的單調(diào)遞增函數(shù),求解出范圍即可證明.
解答:
解:(1)∵數(shù)列{a
n}的前n項(xiàng)和為S
n,a
1=1,S
n=na
n-2n(n-1).
∴當(dāng)n≥2時(shí),S
n=na
n-2n(n-1)①,S
n-1=(n-1)a
n-1-2(n-1)(n-2)②.
∴①-②得:S
n-S
n-1=na
n-(n-1)a
n-1-4n+4,
即當(dāng)n≥2時(shí),a
n-a
n-1=4,
∴數(shù)列{a
n}為等差數(shù)列,a
1=1,d=4
即a
n=4n-3,
故數(shù)列{a
n}的通項(xiàng)公式a
n=4n-3
(2)∵數(shù)列b
n=a
n-n+1,
∴b
n=4n-3-n+1=3n-2,b
n+1=3n+1
∵設(shè)C
n=
=
(
-
),
∴數(shù)列{
}的前n項(xiàng)和為T(mén)
n=
(1-
+-+…+
-
)=
(1-
)
∵T
n=(1-
)是關(guān)于n的單調(diào)遞增函數(shù)
T
n<當(dāng)n=1時(shí),T
1=
(1
-)=
,
∴
≤T
n<
點(diǎn)評(píng):本題綜合考查了數(shù)列的概念,性質(zhì),函數(shù)的單調(diào)性的運(yùn)用,裂項(xiàng)求數(shù)列的和等思想方法.