16.各項為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a5a6a7=10,則a9a10a11=20.

分析 各項為正數(shù)的等比數(shù)列{an}中,利用等比數(shù)列的性值可得a1a2a3=5,a5a6a7=10,a9a10a11成等比數(shù)列,由此求得a9a10a11的值.

解答 解:各項為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a5a6a7=10,設a9a10a11=x,
則由等比數(shù)列的性質(zhì)可得5,10,x成等比數(shù)列,∴5x=100,∴x=20,
故答案為:20.

點評 本題主要考查等比數(shù)列的性質(zhì)應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α,則n∥αB.若m⊥β,α⊥β,則m∥α或m?α
C.若m∥α,α∥β,則m∥βD.若m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知隨機變量X服從正態(tài)分布N(1,σ2),若P(X>-2)=0.9,則P(1<X<4)=( 。
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax(a>0),設$g(x)=f({\frac{2}{a}-x})$.
(1)判斷函數(shù)h(x)=f(x)-g(x)零點的個數(shù),并給出證明;
(2)首項為m的數(shù)列{an}滿足:①an+1+an≠$\frac{2}{a}$;②f(an+1)=g(an).其中0<m<$\frac{1}{a},n∈{N^*}$.求證:對于任意的i,j∈N*,均有ai-aj<$\frac{1}{a}$-m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知復數(shù)z=(a-i)(1+i)(a∈R,i是虛數(shù)單位)是實數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.有三種卡片分別寫有數(shù)字1,10,100,從上述三種卡片中選取若干張,使得這些卡片之和為m(m為正整數(shù)).考慮不同的選法種數(shù),例如m=11時有兩種選法:“一張卡片寫有1,另一張寫有10”或“11張寫有1的卡片”.
(1)若m=100,直接寫出選法種數(shù);
(2)設n為正整數(shù),記所選卡片的數(shù)字和為100n的選法種數(shù)為an,當n≥2時,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2lnx}{x^2}$,且方程f(x)-m=0有兩個相異實數(shù)根x1,x2(x1>x2).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求實數(shù)m的取值范圍;
(3)證明:x12x2+x1x22>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,則tanα=( 。
A.$\frac{1}{2}$B.2C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.數(shù)列{an}為非常數(shù)列,滿足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數(shù)n都成立,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值為(  )
A.1475B.1425C.1325D.1275

查看答案和解析>>

同步練習冊答案