【題目】如圖,矩形中,,,的中點(diǎn).把沿翻折,使得平面平面

(Ⅰ)求證:;

(Ⅱ)求所在直線與平面所成角的正弦值.

【答案】(Ⅰ)見(jiàn)解析(Ⅱ)

【解析】

(Ⅰ)證明空間中兩異面直線垂直的常用方法為先證明直線與平面垂直,再證明另一條直線在這個(gè)平面內(nèi);(Ⅱ)用等體積法求解,或建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量的夾角求解.

解:(Ⅰ)證明:∵的中點(diǎn),

矩形中,,

,則,

∵平面平面

平面平面,

平面,

(Ⅱ)解法一:取的中點(diǎn),連接,,則

∵平面平面,平面平面,

平面,

,

設(shè)點(diǎn)到平面的距離為

中,,則

,則

設(shè)所在直線與平面所成角為

,∴,

所在直線與平面所成角的正弦值為

解法二:取的中點(diǎn),連接,則,

的中點(diǎn),連接,則,

平面,

∴以為原點(diǎn),所在直線為軸,所在直線為軸,建

立如圖所示的空間直角坐標(biāo)系.

,,,,

,,

∴設(shè)為平面的一個(gè)法向量,

,,

所以,令,則

設(shè)所在直線與平面所成角為,

,

所在直線與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,

)證明:;

)證明:;

)若,記數(shù)列的前項(xiàng)和為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對(duì)任意正整數(shù)n,均有.證明:若存在整數(shù)rs(r>s≥2)使得,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)xR,實(shí)數(shù)a[0,+∞),e=2.71828…是自然對(duì)數(shù)的底數(shù),).

(Ⅰ)若fx)≥0在xR上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅱ)若ex≥lnx+m對(duì)任意x0恒成立,求證:實(shí)數(shù)m的最大值大于2.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),已知,過(guò)直線,分別作平面,,使銳二面角,銳二面角,則平面與平面所成的銳二面角的余弦值為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與直線分別與橢圓交于點(diǎn),且四邊形的面積為.

1)求橢圓的方程;

2)設(shè)過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),是否存在經(jīng)過(guò)原點(diǎn),且以為直徑的圓?若有,請(qǐng)求出圓的方程,若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的兩個(gè)頂點(diǎn)坐標(biāo)是,的周長(zhǎng)為,是坐標(biāo)原點(diǎn),點(diǎn)滿足.

1)求點(diǎn)的軌跡的方程;

2)若互相平行的兩條直線,分別過(guò)定點(diǎn),且直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面四邊形中,為直角,為等邊三角形,現(xiàn)把沿著折起,使得平面與平面垂直,且點(diǎn)M的中點(diǎn).

1)求證:平面平面;

2)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0)的離心率為,點(diǎn)Ma,0),N0,b),O0,0),且△OMN的面積為1

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)A,Bx軸上不同的兩點(diǎn),點(diǎn)A(異于坐標(biāo)原點(diǎn))在橢圓C內(nèi),點(diǎn)B在橢圓C外.若過(guò)點(diǎn)B作斜率不為0的直線與C相交于P,Q兩點(diǎn),且滿足∠PAB+QAB180°.證明:點(diǎn)A,B的橫坐標(biāo)之積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案