【題目】m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對任意正整數(shù)n,均有.證明:若存在整數(shù)r、s(r>s≥2)使得,則.

【答案】證明見解析

【解析】

首先假設互素,根據(jù)題目所給遞推關系得到,然后利用數(shù)學歸納法證得對任意整數(shù)n≥3,有成立,通過證明成立,得到,從而證得結論成立.

不妨設互素(否則,若,則互素,并且用代替條件與結論均不改變).

由數(shù)列遞推關系知

以下證明:對任意整數(shù)n≥3,有

事實上,當n=3時②顯然成立.假設n=k時②成立(其中k為某個大于2的整數(shù)),注意到①,有,結合歸納假設知

,

n=k+1時②也成立.因此②對任意整數(shù)n≥3均成立.

注意,當時,②對n=2也成立.

設整數(shù)rs(r>s≥2),滿足.

,由②對n≥2均成立,可知

,即

,則,故r>s≥3.

此時由于②對n≥3均成立,故類似可知③仍成立.

再證明a2,m互素:

事實上,假如a2m存在一個公共素因子p,則由①得p的公因子,而互素,故,這與矛盾.

因此,由③得.r>s,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,已知過點且斜率為1的直線與曲線是參數(shù))交于兩點,與直線交于點.

1)求曲線的普通方程與直線的直角坐標方程;

2)若的中點為,比較的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次知識競賽規(guī)則如下:在主辦方預設的7個問題中,選手若能連續(xù)正確回答出兩個問題,即停止答題,晉級下一輪.假設某選手正確回答每個問題的概率都是0.7,且每個問題的回答結果相互獨立,則該選手恰好回答了5個問題就晉級下一輪的概率等于(

A.0.07497B.0.92503C.0.1323D.0.6174

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,,沿矩形對角線BD折起形成四面體ABCD,在這個過程中,現(xiàn)在下面四個結論:①在四面體ABCD中,當時,;②四面體ABCD的體積的最大值為;③在四面體ABCD中,BC與平面ABD所成角可能為;④四面體ABCD的外接球的體積為定值.其中所有正確結論的編號為( )

A.①④B.①②C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機取一個由01構成的8位數(shù),它的偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等的概率為____________ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是正方體中的側面上的一個動點,則下列結論正確的是(

A.存在無數(shù)個位置滿足

B.若正方體的棱長為1,三棱錐的體積最大值為

C.在線段上存在點,使異面直線所成的角是

D.存在無數(shù)個位置滿足到直線和直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為 為坐標原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,的中點.把沿翻折,使得平面平面

(Ⅰ)求證:;

(Ⅱ)求所在直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形為菱形,,二面角為直二面角,點是棱的中點.

(Ⅰ)求證:;

(Ⅱ)若,當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

同步練習冊答案