4.已知平面上的點(diǎn)集A及點(diǎn)P,在集合A內(nèi)任取一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到集合A的距離,記作d(P,A),如果A={(x,y)|x2+y2=1},點(diǎn)P坐標(biāo)為$(2\sqrt{2},2\sqrt{2})$,那么d(P,A)=2;如果點(diǎn)集A所表示的圖象是半徑為2的圓,那么點(diǎn)集D={P|d(P,A)≤1}所表示的圖形的面積為8π.

分析 集合A={(x,y)|x2+y2=4}表示圓心為O,半徑r為2的圓上所有點(diǎn),且P在圓外,則有d(P,A)=|PO|-r,計(jì)算即可得到.對(duì)于D={P|d(P,A)≤1},討論P(yáng)在圓上和圓外及圓內(nèi),得到P的軌跡,運(yùn)用圓的面積公式計(jì)算即可得到.

解答 解:集合A={(x,y)|x2+y2=4}表示圓心為O,半徑r為2的圓上所有點(diǎn),
點(diǎn)P的坐標(biāo)為$(2\sqrt{2},2\sqrt{2})$,由|PO|=4>2,即有P在圓外,
那么d(P,A)=|PO|-r=4-2=2,
如果點(diǎn)集A所表示的圖形是半徑為2的圓,
若點(diǎn)P在圓上滿足集合D,
P在圓外,則為介于圓心為O,半徑分別為2,3的圓環(huán),
其面積為9π-4π=5π,
P在圓內(nèi),則為介于圓心為O,半徑分別為1,2的圓環(huán),
其面積為4π-π=3π,
那么點(diǎn)集D={P|d(P,A)≤1}所表示的圖形的面積為5π+3π=8π.
故答案為:2,8π.

點(diǎn)評(píng) 本題考查點(diǎn)和圓的位置關(guān)系,主要考查兩點(diǎn)距離的最小值,理解點(diǎn)P到集合A的距離的新定義,并運(yùn)用是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)向量$\overrightarrow{a}$=(cosωx-sinωx,-1),$\overrightarrow$=(2sinωx,-1),其中ω>0,x∈R,已知函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最小正周期為4π.
(1)求f(x)的對(duì)稱中心;
(2)若sinx0是關(guān)于t的方程2t2-t-1=0的根,且x0∈(-$\frac{π}{2}$,$\frac{π}{2}$),求f(x0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2+x-2,g(x)=x3+x2+3x-2
(1)若函數(shù)f(x)在(0,+∞)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[1,3],不等式f(x)<g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知條件p:x2-3x-4≤0;條件q:x2-6x+9-m2≤0,若p是q的充分不必要條件,則實(shí)數(shù)m的取值范圍是(-∞,-4]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且對(duì)AB邊上任意一點(diǎn)N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,則有( 。
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)a+$\frac{10}{a+i}$是純虛數(shù),則實(shí)數(shù)a的值是(  )
A.1B.-1C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow a=(sin\frac{ωx}{2},-sin\frac{ωx}{2}),\overrightarrow b=(cos\frac{ωx}{2},sin\frac{ωx}{2})(ω>0)$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$,x1,x2是函數(shù)f(x)的任意兩個(gè)相異零點(diǎn),且|x1-x2|的最小值為$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)若函數(shù)g(x)=f(x)-m在$(0,\frac{π}{2})$上無零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$x∈(-\frac{π}{2},0)$,$sinx=-\frac{3}{5}$,則當(dāng)k∈Z時(shí),tan(x+kπ)=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖所示).為了進(jìn)一步分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣的方法抽出100人作進(jìn)一步調(diào)查,則在[2000,2500]月收入段應(yīng)抽出( 。
A.10人B.15人C.20人D.25人

查看答案和解析>>

同步練習(xí)冊(cè)答案