【題目】已知 . (Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若 ,畫出函數(shù)y=g(x)的圖象,討論y=g(x)﹣m(m∈R)的零點(diǎn)個(gè)數(shù).

【答案】解:(Ⅰ)f(x)=2 =2sinxcosx+2sin2x=sin2x﹣cos2x+1= ∴f(x)的最小正周期T=π;
函數(shù)f(x)的最大值為: ;
(Ⅱ) ,利用“5點(diǎn)畫法”,函數(shù)y=g(x)在區(qū)間 上列表為

x

-

-

﹣π

0

0

﹣1

0

1

2

1

1

2

描點(diǎn)作圖

那么:y=g(x)﹣m(m∈R)的零點(diǎn)個(gè)數(shù),即為函數(shù)y=g(x)與直線y=m的交點(diǎn)個(gè)數(shù),
由圖可知,當(dāng) 時(shí),無(wú)零點(diǎn);
當(dāng) 時(shí),有1個(gè)零點(diǎn);
當(dāng) 時(shí),有2個(gè)零點(diǎn);
當(dāng)m=2時(shí),有3個(gè)零點(diǎn)
【解析】(Ⅰ)根據(jù)f(x)=2 ,利用向量數(shù)量積的運(yùn)算法則求解f(x)并化簡(jiǎn),即可求得f(x)的最小正周期和最大值(Ⅱ) ,利用“5點(diǎn)畫法”畫出函數(shù)y=g(x)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 的前n項(xiàng)和為Sn ,且滿足:
;② ,其中
(1)求p的值;
(2)數(shù)列 能否是等比數(shù)列?請(qǐng)說明理由;
(3)求證:當(dāng)r 2時(shí),數(shù)列 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)證明:PC⊥BD
(Ⅱ)若E是PA的中點(diǎn),且△ABC與平面PAC所成的角的正切值為 ,求二面角A﹣EC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,cosB= ,點(diǎn)D在線段BC上.
(1)若∠ADC= π,求AD的長(zhǎng);
(2)若BD=2DC,△ABC的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在(m,n)上的導(dǎo)函數(shù)為g(x),x∈(m,n),g(x)若的導(dǎo)函數(shù)小于零恒成立,則稱函數(shù)f(x)在(m,n)上為“凸函數(shù)”.已知當(dāng)a≤2時(shí), ,在x∈(﹣1,2)上為“凸函數(shù)”,則函數(shù)f(x)在(﹣1,2)上結(jié)論正確的是(
A.既有極大值,也有極小值
B.有極大值,沒有極小值
C.沒有極大值,有極小值
D.既無(wú)極大值,也沒有極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是(
A.f(1)<f( )<f( )??
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)??
D.f( )<f(1)<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓E的方程為 +y2=1(a>1),O為坐標(biāo)原點(diǎn),直線l與橢圓E交于點(diǎn)A,B,M為線段AB的中點(diǎn).
(1)若A,B分別為E的左頂點(diǎn)和上頂點(diǎn),且OM的斜率為﹣ ,求E的標(biāo)準(zhǔn)方程;
(2)若a=2,且|OM|=1,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , Sn=2an﹣n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)m使得 恒成立?若存在,求實(shí)數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案