4.已知等比數(shù)列{an}的首項為1,若4a1,2a2,a3成等差數(shù)列,則數(shù)列{$\frac{1}{{a}_{n}}$}的前5項和為( 。
A.$\frac{33}{16}$B.2C.$\frac{31}{16}$D.$\frac{31}{64}$

分析 等比數(shù)列{an}的首項為1,由4a1,2a2,a3成等差數(shù)列,可得2×2a2=a3+4a1,即為4a1q=a1(q2+4),解得q.再利用等比數(shù)列的求和公式即可得出.

解答 解:等比數(shù)列{an}的首項為1,∵4a1,2a2,a3成等差數(shù)列,
∴2×2a2=a3+4a1,∴4a1q=a1(q2+4),解得q=2.
∴an=2n-1,$\frac{1}{{a}_{n}}$=$(\frac{1}{2})^{n-1}$.
則數(shù)列{$\frac{1}{{a}_{n}}$}的前5項和=$\frac{1-\frac{1}{{2}^{5}}}{1-\frac{1}{2}}$=$\frac{31}{16}$.
故選:C.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是一個三棱柱的正視圖和俯視圖,其俯視圖是面積為8$\sqrt{2}$的矩形,則該三棱柱的體積是( 。
A.8B.4$\sqrt{2}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一個幾何體的三視圖如圖所示(正視圖是兩個正方形,俯視圖是兩個正三角形),則其體積為( 。
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{9\sqrt{3}}}{4}$C.$3\sqrt{3}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.${(\sqrt{x}+\frac{3}{x})}^{n}$的展開式中,各項系數(shù)之和為A,各項的二項式系數(shù)之和為B,若$\frac{A}{B}$=32,則n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A,B是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1和雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的公共頂點,其中a>b>0,P是雙曲線上的動點,M是橢圓上的動點(P,M都異于A,B),且滿足$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ($\overrightarrow{MA}$+$\overrightarrow{MB}$)(λ∈R),設(shè)直線AP,BP,AM,BM的斜率分別為k1,k2,k3,k4,若k1+k2=$\sqrt{3}$,則k3+k4=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知下列命題:
①命題:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3;
②若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);
③若f(x)=x+$\frac{1}{x+1}$,則?x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項和為Sn,若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是①②④⑤.(只填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知不等式ax2+2x+c>0的解是-$\frac{1}{3}$<x$<\frac{1}{2}$,求關(guān)于x的不等式-cx2+2x-a>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)為定義在R上的連續(xù)奇函數(shù)且3f(x)+xf′(x)>0對x>0恒成立,則方程x3f(x)=-1的實根個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系中,若點P(m-3,m+1)在第二象限,則m的取值范圍為( 。
A.-1<m<3B.m>3C.m<-1D.m>-1

查看答案和解析>>

同步練習(xí)冊答案