3.已知集合S={0,1,2,3,4,5,6},T={x|x2-6x+5≤0},則S∩T=(  )
A.{2,3,4}B.{1,2,3,4,5}C.{2,3}D.T

分析 化簡(jiǎn)集合T,根據(jù)交集的定義寫出S∩T即可.

解答 解:集合S={0,1,2,3,4,5,6},
T={x|x2-6x+5≤0}={x|1≤x≤5},
則S∩T={1,2,3,4,5}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD.
(Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)在線段EF上是否存在一點(diǎn)P,使得平面PAB與平面ADE所成的銳二面角的余弦值為$\frac{5\sqrt{7}}{28}$.若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4$\sqrt{2}$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知(ax+b)6的展開式中x4項(xiàng)的系數(shù)與x5項(xiàng)的系數(shù)分別為135與-18,則(ax+b)6展開式所有項(xiàng)系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在四棱臺(tái)ABCD-A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(Ⅰ)若M為CD中點(diǎn),求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從正五邊形的5個(gè)頂點(diǎn)中隨機(jī)選擇3個(gè)頂點(diǎn),則以它們作為頂點(diǎn)的三角形是銳角三角形的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)幾何體的三視圖如圖所示,圖中矩形均為邊長(zhǎng)是1的正方形弧線為四分之一圓,則該幾何體的體積是$1-\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.?dāng)?shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{2}$an=1,數(shù)列{bn},{cn}滿足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{_{n}_{n+2}}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式Tn<m對(duì)任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(x,$\frac{1}{2}$),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x為( 。
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.-$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案