設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)-=1(a>0,b>0)的焦點(diǎn),若在雙曲線(xiàn)上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=a,則該雙曲線(xiàn)的漸近線(xiàn)方程為( )
A.x±y=0
B.x±y=0
C.x±y=0
D.x±y=0
【答案】分析:假設(shè)|F1P|=x,進(jìn)而分別根據(jù)中線(xiàn)定理和余弦定理建立等式求得c2+5a2=14a2-2c2,求得a和c的關(guān)系,進(jìn)而根據(jù)b=求得a和的關(guān)系進(jìn)而求得漸進(jìn)線(xiàn)的方程.
解答:解:假設(shè)|F1P|=x
OP為三角形F1F2P的中線(xiàn),
根據(jù)三角形中線(xiàn)定理可知
x2+(2a+x)2=2(c2+7a2
整理得x(x+2a)=c2+5a2
由余弦定理可知
x2+(2a+x)2-x(2a+x)=4c2
整理得x(x+2a)=14a2-2c2
進(jìn)而可知c2+5a2=14a2-2c2
求得3a2=c2
∴c=a
b=a
那么漸近線(xiàn)為y=±x,即x±y=0
故選D
點(diǎn)評(píng):本題將解析幾何與三角知識(shí)相結(jié)合,主要考查了雙曲線(xiàn)的定義、標(biāo)準(zhǔn)方程,幾何圖形、幾何性質(zhì)、漸近線(xiàn)方程,以及斜三角形的解法,屬中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦點(diǎn),若在雙曲線(xiàn)上存在點(diǎn)P,滿(mǎn)足F1PF2=60°,|OP|=
10
a
,則該雙曲線(xiàn)的漸近線(xiàn)方程為(  )
A、
3
y=0
B、
3
x±y=0
C、
2
y=0
D、
2
x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),若在橢圓上存在點(diǎn)P滿(mǎn)足F1PF2=
π
3
,且|OP|=
3
2
a
,則該橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點(diǎn),若在橢圓上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=
3
2
a
,則該橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn),若在雙曲線(xiàn)上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=
7
2
a,則該雙曲線(xiàn)的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn),若在雙曲線(xiàn)上存在點(diǎn)P,滿(mǎn)足∠F1PF2=30°,|OP|=
7
a,則該雙曲線(xiàn)的漸近線(xiàn)方程為?

查看答案和解析>>

同步練習(xí)冊(cè)答案