某學(xué)校組織了一次安全知識(shí)競(jìng)賽,現(xiàn)隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī),如下表所示(不低于90分的測(cè)試成績(jī)稱(chēng)為“優(yōu)秀成績(jī)”):

79
90
82
80
84
95
79
86
89
91
97
86
79
78
86
77
87
89
83
85
 
(1)若從這20人中隨機(jī)選取3人,求至多有1人是“優(yōu)秀成績(jī)”的概率;
(2)以這20人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校全體學(xué)生中(人數(shù)很多)任選3人,記表示抽到“優(yōu)秀成績(jī)”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

(1)(2)詳見(jiàn)解析.

解析試題分析:(1)從抽取的20名學(xué)生的測(cè)試成績(jī)中統(tǒng)計(jì)出成績(jī)優(yōu)秀的學(xué)生共4人,從20人中隨機(jī)選取3人,有種不同結(jié)果,其中至多一人成績(jī)優(yōu)秀的有種,可用古典概型求解概率值.
(2)由樣本估計(jì)總體可知抽到“優(yōu)秀成績(jī)”學(xué)生的概率,由于學(xué)生人數(shù)很多,因此任選3人可看作3次獨(dú)立重復(fù)試驗(yàn),即服從
解:(1)由表知:“優(yōu)秀成績(jī)”為人.                 1分
設(shè)隨機(jī)選取人,至多有人是“優(yōu)秀成績(jī)”為事件,則 .                    5分
(2)由樣本估計(jì)總體可知抽到“優(yōu)秀成績(jī)”學(xué)生的概率.   6分
可取                               7分
;
.
的分布列:


0
1
2
3





 
11分
.           12分
, .                      12分
考點(diǎn):1、古典概型;2、獨(dú)立重復(fù)試驗(yàn);3、二項(xiàng)分布.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)每個(gè)工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別為各人是否需使用設(shè)備相互獨(dú)立.
(1)求同一工作日至少3人需使用設(shè)備的概率;
(2)X表示同一工作日需使用設(shè)備的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

API
 

 

 

 

 

 

 

 
空氣質(zhì)量
 
優(yōu)
 

 
輕微污染
 
輕度污染
 
中度污染
 
中度重污染
 
重度污染
 
天數(shù)
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
 
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元),空氣質(zhì)量指數(shù)API為ω。在區(qū)間[0,100]對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;在區(qū)間對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時(shí)造成的 經(jīng)濟(jì)損失為500元,當(dāng)API為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)API大于300時(shí)造成的 經(jīng)濟(jì)損失為2000元;
(1)試寫(xiě)出是S(ω)的表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過(guò)600元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
P(K2 ≥ k0)
 
0.25
 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 
k0
 
1.323
 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 

 

 
附:

 
 
非重度污染
 
重度污染
 
合計(jì)
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合計(jì)
 
 
 
 
 
100
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

高二年級(jí)的一個(gè)研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個(gè)小組進(jìn)行驗(yàn)證性實(shí)驗(yàn).
(1)第1組做了5次這種植物種子的發(fā)芽實(shí)驗(yàn)(每次均種下一粒種子),求他們的實(shí)驗(yàn)至少有3次成功的概率;
(2)第二小組做了若干次發(fā)芽試驗(yàn)(每次均種下一粒種子),如果在一次實(shí)驗(yàn)中種子發(fā)芽成功就停止實(shí)驗(yàn),否則將繼續(xù)進(jìn)行下次實(shí)驗(yàn),直到種子發(fā)芽成功為止,但發(fā)芽實(shí)驗(yàn)的次數(shù)最多不超過(guò)5次,求第二小組所做種子發(fā)芽實(shí)驗(yàn)的次數(shù)的概率分布列和期望.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)要從中選2名教師去參加會(huì)議,有多少種不同的選法?
(2)現(xiàn)要從中選出4名教師去參加會(huì)議,求男、女教師各選2名的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校一位教師要去某地參加全國(guó)數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車(chē)、輪船、汽車(chē)、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車(chē)或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫(xiě)程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時(shí),根據(jù)表中的數(shù)據(jù),分別寫(xiě)出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫(xiě)的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球得2分,取出一個(gè)藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任取(有放回,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此兩球所得分?jǐn)?shù)之和,求ξ分布列;
(2)從該袋子中任取(且每球取到的機(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若E(η)=,V(η)=,求a∶b∶c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某校趣味運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,為了活躍氣氛,大會(huì)組委會(huì)決定在頒獎(jiǎng)過(guò)程中進(jìn)行抽獎(jiǎng)活動(dòng),用分層抽樣的方法從參加頒獎(jiǎng)儀式的高一、高二、高三代表隊(duì)中抽取20人前排就座,其中高二代表隊(duì)有6人.
(1)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)從中隨機(jī)抽取2人上臺(tái)抽獎(jiǎng),求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;

(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng).求該代表中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案