某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)

運行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計表(部分)
運行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

(1)     
(2)乙同學(xué)所編程序符合算法要求的可能性較大
(3)ξ的分布列為

ξ
0
1
2
3
P




 
所以E(ξ)=0×+1×+2×+3×=1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校組織了一次安全知識競賽,現(xiàn)隨機抽取20名學(xué)生的測試成績,如下表所示(不低于90分的測試成績稱為“優(yōu)秀成績”):

79
90
82
80
84
95
79
86
89
91
97
86
79
78
86
77
87
89
83
85
 
(1)若從這20人中隨機選取3人,求至多有1人是“優(yōu)秀成績”的概率;
(2)以這20人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校全體學(xué)生中(人數(shù)很多)任選3人,記表示抽到“優(yōu)秀成績”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,  
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一個盒子中,放有標(biāo)號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標(biāo)號分別為x、y,設(shè)O為坐標(biāo)原點,點P的坐標(biāo)為.
(1)求隨機變量 的最大值,并求事件“取得最大值”的概率;
(2)求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校在一次運動會上,將要進行甲、乙兩名同學(xué)的乒乓球冠亞軍決賽,比賽實行三局兩勝制.已知每局比賽中,若甲先發(fā)球,其獲勝的概率為,否則其獲勝的概率為.
(1)若在第一局比賽中采用擲硬幣的方式?jīng)Q定誰先發(fā)球,試求甲在此局獲勝的概率;
(2)若第一局由乙先發(fā)球,以后每局由負(fù)方先發(fā)球.規(guī)定勝一局記2分,負(fù)一局記0分,記為比賽結(jié)束時甲的得分,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對實驗中學(xué)高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如圖:
(1)求出表中M,p及圖中a的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求兩人來自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電器商經(jīng)過多年的經(jīng)驗發(fā)現(xiàn)本店每個月售出的電冰箱的臺數(shù)ξ是一個隨機變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設(shè)每售出一臺電冰箱,電器商獲利300元.如銷售不出,則每臺每月需花保管費100元.問電器商每月初購進多少臺電冰箱才能使月平均收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某次體檢中,有6位同學(xué)的平均體重為65公斤.用表示編號為的同學(xué)的體重,且前5位同學(xué)的體重如下:

編號n
1
2
3
4
5
體重xn
60
66
62
60
62
(1)求第6位同學(xué)的體重及這6位同學(xué)體重的標(biāo)準(zhǔn)差;
(2)從前5位同學(xué)中隨機地選2位同學(xué),求恰有1位同學(xué)的體重在區(qū)間中的概率.

查看答案和解析>>

同步練習(xí)冊答案