已知數(shù)列{an}的各項均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項和Tn.
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列的前項和為,已知(,為常數(shù)),,,(1)求數(shù)列的通項公式;(2)求所有滿足等式成立的正整數(shù),.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2014·隨州模擬)已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項公式.
(2)設數(shù)列{an}的前n項和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對任意實數(shù)列,定義它的第項為,假設是首項是公比為的等比數(shù)列.
(1)求數(shù)列的前項和;
(2)若,,.
①求實數(shù)列的通項;
②證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列的前項和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當時,數(shù)列滿足,,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com